National Surface Transportation Safety Center for Excellence Reports (NSTSCE, VTTI)
Permanent URI for this collection
http://www.vtti.vt.edu/national/nstsce/
Browse
Browsing National Surface Transportation Safety Center for Excellence Reports (NSTSCE, VTTI) by Author "Anderson, Gabrial T."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Highly Automated Ridesharing: Implications of Novel Seating Configurations and Seatbelt UseAnderson, Gabrial T.; Radlbeck, Joshua (National Surface Transportation Safety Center for Excellence, 2024-08-29)Upcoming novel vehicle designs, such as vehicles equipped with Level 4 (L4) driving automation features, are intended to be used as rideshare automated vehicles (RAVs). In vehicles without L4 automation features, drivers typically receive all regulated telltales, indicators, and alerts intended to encourage seatbelt use. In a vehicle with L4 features, a driver is not present, meaning these alerts need to be presented directly to the occupants. Understanding occupant behavior in a novel vehicle design can inform effective methods for encouraging seatbelt use. Thirty participants rode in an RAV on a closed test track. Participants rode in groups of three on a 5-minute route at speeds up to 15 mph. There were two benches with three seats per bench: a forward-facing row and rear-facing row. Human-machine interfaces were placed overhead for each seating position; these included a novel seatbelt reminder alert (SBR) that would chime if the passenger was unbuckled when the vehicle started to move. If participants remained unbuckled, the SBR would last 10 seconds before doubling in tempo until the participant in that seating position was buckled. A post ride survey was administered to capture participant opinions of their experience. Where appropriate, results from a previous proprietary study of 60 single riders were compared to the current study. Group riders were significantly more likely to buckle before vehicle movement than single riders. Group riders were more likely to sit in the rear-facing row of seats than the single riders. Across all participants, females were more likely to buckle before vehicle movement than males. For those participants who received the SBR alert (i.e., those who were not buckled before vehicle movement), the majority began buckling within the first ~7-seconds of SBR presentation. Results suggest riding context can impact seatbelt use. Although a majority of participants preferred to face forward, group dynamics forced some participants to sit backwards in all rides. Further research is needed to understand the impact of riding environment, other rider populations, and SBRs on buckling behavior in RAVs.
- Human-Machine Interface Review: A Comparison of Legacy and Touch-Based Center Stack ControlsAnderson, Gabrial T.; Antona-Makoshi, Jacobo; Klauer, Charlie (National Surface Transportation Safety Center for Excellence, 2024-04-19)The current study investigated the effect of center stack design on driver distraction. Replacing physical center stack controls with touchscreens is an emerging trend in automotive design. This design decision requires a driver to take their eyes off the forward roadway to interact with a touchscreen center stack, as there is no tactile feedback like touching physical controls. Multiple resource theory (Wickens, 2004) suggests that performing dual tasks (i.e., driving and touchscreen interaction) that compete for similar resources (i.e., visual attention and manual input) can degrade performance on both tasks. It is important to understand the impact of touchscreen controls on driver distraction to ensure safe human-machine interface design. Data from legacy vehicles with physical center stack controls were extracted from the Second Strategic Highway Research Program, an NDS focusing on driver behavior over time in personal vehicles. Data from modern vehicles with touchscreen designs were extracted from the Virginia Connected Corridor 50 Elite Vehicle NDS and Virginia Tech Transportation Institute Level 2 NDS, both focusing on driver behavior in personal vehicles equipped with SAE Level 2 (L2) driving automation features. Twenty-second events that had a center stack interaction (CSI) and minimum speed of 35-mph or greater were selected from each dataset. For the modern vehicle dataset, L2 system status was coded for each event as L2 active or L2 inactive, and task type was coded as visual or visual-manual. The legacy vehicle dataset only had visual-manual CSIs. Driver distraction was defined as eye glances towards the center stack (eyes on center stack; EOCS) during the 20-second event. EOCS was split into total time, mean time, single longest glance, number of glances, and glances over 2 seconds in duration. Total time on task was recorded for the modern vehicles. Results suggest that CSIs with modern vehicle touchscreens have higher EOCS compared to legacy vehicle physical controls. Notably, these differences are even more pronounced when comparing visual-manual CSIs (e.g., adjusting climate control) across display type. Modern vehicle CSIs were also more likely to include glances over 2 seconds compared to legacy vehicle CSIs. Within the modern vehicle dataset, all EOCS metrics (except number of glances), time on task, and glances over 2 seconds were significantly higher when L2 systems were active versus inactive. Visual-manual CSIs were higher for all variables compared to visual CSIs. Glances over 2 seconds were more likely when L2 systems were active for all visual CSIs, but not for visual-manual CSIs. Touchscreen center stack designs are shown to be more distracting than legacy designs comprised of physical controls. When L2 systems are active, CSIs are more distracting than when L2 systems are inactive. Although display type has been shown to have a distracting effect, comparison of specific tasks (e.g., adjusting climate controls) is needed to represent true differences in driver distraction, as more complex tasks that are possible in modern vehicles versus legacy vehicles could contribute to the results of the current study.