Scholarly Works, Virginia-Maryland College of Veterinary Medicine
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Virginia-Maryland College of Veterinary Medicine by Author "Barrett, Jennifer G."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Aligned nanofiber topography directs the tenogenic differentiation of mesenchymal stem cellsPopielarczyk, Tracee L.; Nain, Amrinder S.; Barrett, Jennifer G. (MDPI, 2017-01-06)Tendon is commonly injured, heals slowly and poorly, and often suffers re-injury after healing. This is due to failure of tenocytes to effectively remodel tendon after injury to recapitulate normal architecture, resulting in poor mechanical properties. One strategy for improving the outcome is to use nanofiber scaffolds and mesenchymal stem cells (MSCs) to regenerate tendon. Various scaffold parameters are known to influence tenogenesis. We designed suspended and aligned nanofiber scaffolds with the hypothesis that this would promote tenogenesis when seeded with MSCs. Our aligned nanofibers were manufactured using the previously reported non-electrospinning Spinneret-based Tunable Engineered Parameters (STEP) technique. We compared parallel versus perpendicular nanofiber scaffolds with traditional flat monolayers and used cellular morphology, tendon marker gene expression, and collagen and glycosaminoglycan deposition as determinants for tendon differentiation. We report that compared with traditional control monolayers, MSCs grown on nanofibers were morphologically elongated with higher gene expression of tendon marker scleraxis and collagen type I, along with increased production of extracellular matrix components collagen (p = 0.0293) and glycosaminoglycan (p = 0.0038). Further study of MSCs in different topographical environments is needed to elucidate the complex molecular mechanisms involved in stem cell differentiation.
- Engineering Tendon: Scaffolds, Bioreactors, and Models of RegenerationYoungstrom, Daniel W.; Barrett, Jennifer G. (Hindawi, 2016)Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems.
- Functional Characterization of Detergent-Decellularized Equine Tendon Extracellular Matrix for Tissue Engineering ApplicationsYoungstrom, Daniel W.; Barrett, Jennifer G.; Jose, Rod R.; Kaplan, David L. (PLOS, 2013-05-17)Natural extracellular matrix provides a number of distinct advantages for engineering replacement orthopedic tissue due to its intrinsic functional properties. The goal of this study was to optimize a biologically derived scaffold for tendon tissue engineering using equine flexor digitorum superficialis tendons. We investigated changes in scaffold composition and ultrastructure in response to several mechanical, detergent and enzymatic decellularization protocols using microscopic techniques and a panel of biochemical assays to evaluate total protein, collagen, glycosaminoglycan, and deoxyribonucleic acid content. Biocompatibility was also assessed with static mesenchymal stem cell (MSC) culture. Implementation of a combination of freeze/thaw cycles, incubation in 2% sodium dodecyl sulfate (SDS), trypsinization, treatment with DNase-I, and ethanol sterilization produced a non-cytotoxic biomaterial free of appreciable residual cellular debris with no significant modification of biomechanical properties. These decellularized tendon scaffolds (DTS) are suitable for complex tissue engineering applications, as they provide a clean slate for cell culture while maintaining native three-dimensional architecture.
- Magnetic resonance imaging-guided Treatment of equine Distal interphalangeal Joint collateral ligaments: 2009–2014White, Nathaniel A. II; Barrett, Jennifer G. (Frontiers, 2016-09-05)Objectives: To determine the outcome of treating distal interphalangeal joint collateral ligament (DIJCL) desmopathy using magnetic resonance imaging (MRI)-guided ligament injection. Methods: Medical records of 13 adult horses diagnosed with DIJCL desmopathy using low-field MRI and treated by MRI-guided ligament injection of mesenchymal stem cells and/or platelet-rich plasma (PRP) were reviewed. Information collected included signalment, MRI diagnosis, treatment type, time to resolution of lameness, and level of exercise after treatment. results: Collateral ligament inflammation was diagnosed as a cause of lameness in 13 horses. MRI was used to guide the injection of the injured DIJCL. All lameness attributed to DIJCL desmopathy resolved with the resulting level of performance at expected (10) or less than expected (3). conclusion and clinical relevance: Injection of the DIJCL can be safely completed in horses standing in a low-field magnet guided by MRI as previously demonstrated in cadaver specimens. The positive response in all horses suggests that administration of stem cells or PRP along with rest and appropriate shoeing may be a safe and useful treatment for DIJCL desmopathy.