Virginia Tech Transportation Institute (VTTI)
Permanent URI for this community
Browse
Browsing Virginia Tech Transportation Institute (VTTI) by Author "Ahmadian, Mehdi"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Application of Magnetorheological Dampers for Vehicle Seat SuspensionsReichert, Brian Anthony Jr. (Virginia Tech, 1997-12-03)This study evaluates and provides solutions to the problem of poor subjective feel of seat suspensions that employ magnetorheological (MR) dampers and skyhook control. An Isringhausen seat suspension that had been modified to replace the stock passive damper with a controllable MR damper was used to evaluate the problems and potential solutions. A seat suspension tester was built using materials from 80/20 Incorporated and a hydraulic actuation system from MTS. An HP Dynamic Signal Analyzer was used as the main piece of data acquisition equipment, along with a Pentium PC and National Instruments Data Acquisition card. All of the hardware is installed in a controlled laboratory facility at Virginia Tech's Advanced Vehicle Dynamics Lab. The first task was to analyze the source of the unexpected peak in the acceleration spectrum of the suspended seat. This analysis was accomplished using a combination of pure tone inputs and a Fourier analysis of a simple model of the system. This analysis indicated that the peak is actually three times the resonant frequency of the seat suspension. The analysis also indicates that the frequency components continue at odd multiples of the resonant frequency, however, the third peak is the most noticeable. The third multiple is in the resonant frequency range (4-8 Hz) of the human body, so it was initially blamed for the poor subjective feel of the seat. However, solutions to remove this harmonic were tested without success. The work progressed to a time domain analysis, which eventually led to determining the source of the poor subjective feel. The seat suspension was excited with a variety of inputs. The seat acceleration and damper control current were examined in the time domain to show that the cause of the poor subjective feel is the control signal discontinuities. The control policy was modified to remove the control signal discontinuities and was found to improve the subjective feel of the seat. Finally, several two-degree-of-freedom control policies were implemented and tested. Although the results from this testing are inconclusive, they generated several recommendations for future research.
- Quantifying the effect of roadway, driver, vehicle, and location characteristics on the frequency of longitudinal and lateral accelerationsAli, Gibran; McLaughlin, Shane B.; Ahmadian, Mehdi (Pergamon-Elsevier, 2021-10-01)The purpose of this study is to understand and quantify the simultaneous effects of roadway speed category, driver age, driver gender, vehicle class, and location on the rates of longitudinal and lateral acceleration epochs. The rate of usual as well as harsh acceleration epochs are used to extract insights on driving risk and driver comfort preferences. However, an analysis of acceleration rates at multiple thresholds incorporating various effects while using a large-scale and diverse dataset is missing. This analysis will fill this research gap. Data from the 2nd Strategic Highway Research Program Naturalistic Driving Study (SHRP2 NDS) was used for this analysis. The rate of occurrence of acceleration epochs was modeled using negative binomial distribution based generalized linear mixed effect models. Roadway speed category, driver age, driver gender, vehicle class, and location were used as the fixed effects and the driver identifier was used as the random effect. Incidence rate ratios were then calculated to compare subcategories of each fixed effect. Roadway speed category has the strongest effect on longitudinal and lateral accelerations of all magnitudes. Acceleration epoch rates consistently decrease as the roadway speed category increases. The difference in the rates depends on the threshold and is up to three orders of magnitude. Driver age is another significant factor with clear trends for longitudinal and lateral acceleration epochs. Younger and older drivers experience higher rates of longitudinal accelerations and decelerations. However, the rate of lateral accelerations consistently decreases with age. Vehicle class also has a significant effect on the rate of harsh accelerations with minivans consistently experiencing lower rates.
- The Surface Accelerations Reference— A Large-Scale, Interactive Catalog of Passenger Vehicle AccelerationsAli, Gibran; McLaughlin, Shane; Ahmadian, Mehdi (IEEE, 2023-04)There is a need for a large-scale, real world, diverse, and context rich vehicle acceleration catalog that can be used to design, analyze, and compare various intelligent transportation systems. This paper fulfills three primary objectives. First, it provides such a catalog through the Surface Accelerations Reference, which is openly available as an interactive analytics tool as well as an open and downloadable dataset. The Surface Accelerations Reference statistically describes the driving profiles of about 3,500 individuals contributing 34 million miles of continuous driving data collected in the Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS). These profiles were created by summarizing billions of longitudinal and lateral acceleration epochs experienced by the participants. Second, this paper introduces a standardized methodology for creating such a catalog so that similar acceleration profiles can be produced for other human cohorts or automated driving systems. Finally, the data are used to analyze the effect of roadway speed category on the rates of lateral and longitudinal acceleration epochs at various thresholds. It is observed that, for the median driver, the rates of epochs are up to three orders of magnitude higher on low-speed roads as compared to high-speed roads. This catalog will facilitate intelligent vehicle system designers to compare and tune their systems for safer driving experiences. It will also allow agencies with similar data to create comparable catalogs facilitating safety and behavioral comparisons between populations. Datasets: https://github.com/gibran-ali/surface-accelerations-reference.