Macromolecules Innovation Institute (MII)
Permanent URI for this community
Browse
Browsing Macromolecules Innovation Institute (MII) by Author "Baird, Donald G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Development of Recyclable and High-Performance In Situ Hybrid TLCP/Glass Fiber CompositesChen, Tianran; Kazerooni, Dana; Ju, Lin; Okonski, David A.; Baird, Donald G. (MDPI, 2020-08-24)By combining the concepts of in situ thermotropic liquid crystalline polymer (TLCP) composites and conventional fiber composites, a recyclable and high-performance in situ hybrid polypropylene-based composite was successfully developed. The recycled hybrid composite was prepared by injection molding and grinding processes. Rheological and thermal analyses were utilized to optimize the processing temperature of the injection molding process to reduce the melt viscosity and minimize the degradation of polypropylene. The ideal temperature for blending the hybrid composite was found to be 305 °C. The influence of mechanical recycling on the different combinations of TLCP and glass fiber composites was analyzed. When the weight fraction ratio of TLCP to glass fiber was 2 to 1, the hybrid composite exhibited better processability, improved tensile performance, lower mechanical anisotropy, and greater recyclability compared to the polypropylene reinforced by either glass fiber or TLCP alone.
- Prediction of Young’s Modulus for Injection Molded Long Fiber Reinforced ThermoplasticsChen, Hongyu; Baird, Donald G. (MDPI, 2018-08-06)In this article, the elastic properties of long-fiber injection-molded thermoplastics (LFTs) are investigated by micro-mechanical approaches including the Halpin-Tsai (HT) model and the Mori-Tanaka model based on Eshelby’s equivalent inclusion (EMT). In the modeling, the elastic properties are calculated by the fiber content, fiber length, and fiber orientation. Several closure approximations for the fourth-order fiber orientation tensor are evaluated by comparing the as-calculated elastic stiffness with that from the original experimental fourth-order tensor. An empirical model was developed to correct the fibers’ aspect ratio in the computation for the actual as-formed LFTs with fiber bundles under high fiber content. After the correction, the analytical predictions had good agreement with the experimental stiffness values from tensile tests on the LFTs. Our analysis shows that it is essential to incorporate the effect of the presence of fiber bundles to accurately predict the composite properties. This work involved the use of experimental values of fiber orientation and serves as the basis for computing part stiffness as a function of mold filling conditions. The work also explains why the modulus tends to level off with fiber concentration.