Department of Mechanical Engineering
Permanent URI for this community
The Virginia Tech Mechanical Engineering Department serves its students, alumni, the Commonwealth of Virginia, and the nation through a variety of academic, research and service activities.
Our missions are to: holistically educate our students for professional leadership as creative problem-solvers in a diverse society, conduct advanced research for societal advancement, train graduate students for scholarly inquiry, and engage with alumni, industry, government, and community partners through outreach activities. In order to produce engineers prepared for success across a range of career paths, our academic program integrates training in engineering principles, critical thinking, hands-on projects, open-ended problem solving, and the essential skills of teamwork, communication, and ethics.
Browse
Browsing Department of Mechanical Engineering by Author "Abaid, Nicole"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES)Cienfuegos, Paola Jaramillo; Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander (PLOS, 2017-03-08)Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection.
- The Effect of Binaural Beats on Visuospatial Working Memory and Cortical ConnectivityBeauchene, Christine; Abaid, Nicole; Moran, Rosalyn J.; Diana, Rachel A.; Leonessa, Alexander (PLOS, 2016-11-28)Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task.
- Extracting Interactions between Flying Bat Pairs Using Model-Free MethodsRoy, Subhradeep; Howes, Kayla; Müller, Rolf; Butail, Sachit; Abaid, Nicole (MDPI, 2019-01-09)Social animals exhibit collective behavior whereby they negotiate to reach an agreement, such as the coordination of group motion. Bats are unique among most social animals, since they use active sensory echolocation by emitting ultrasonic waves and sensing echoes to navigate. Bats’ use of active sensing may result in acoustic interference from peers, driving different behavior when they fly together rather than alone. The present study explores quantitative methods that can be used to understand whether bats flying in pairs move independently of each other or interact. The study used field data from bats in flight and is based on the assumption that interactions between two bats are evidenced in their flight patterns. To quantify pairwise interaction, we defined the strength of coupling using model-free methods from dynamical systems and information theory. We used a control condition to eliminate similarities in flight path due to environmental geometry. Our research question is whether these data-driven methods identify directed coupling between bats from their flight paths and, if so, whether the results are consistent between methods. Results demonstrate evidence of information exchange between flying bat pairs, and, in particular, we find significant evidence of rear-to-front coupling in bats’ turning behavior when they fly in the absence of obstacles.
- Latent heat of traffic moving from restAhmadi, S. Farzad; Berrier, Austin S.; Doty, William M.; Greer, Pat G.; Habibi, Mohammad; Morgan, Hunter A.; Waterman, Josam H.C.; Abaid, Nicole; Boreyko, Jonathan B. (IOP Publishing, 2017-11-22)Contrary to traditional thinking and driver intuition, here we show that there is no benefit to ground vehicles increasing their packing density at stoppages. By systematically controlling the packing density of vehicles queued at a traffic light on a Smart Road, drone footage revealed that the benefit of an initial increase in displacement for close-packed vehicles is completely offset by the lag time inherent to changing back into a ‘liquid phase’ when flowresumes. This lag is analogous to the thermodynamic concept of the latent heat of fusion, as the ‘temperature’ (kinetic energy) of the vehicles cannot increase until the traffic ‘melts’ into the liquid phase.These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to lessen the likelihood of collisions with no loss in flowefficiency. In contrast, motion capture experiments of a line of people walking from rest showed higher flow efficiency with increased packing densities, indicating that the importance of latent heat becomes trivial for slower moving systems.