Journals
Permanent URI for this community
Browse
Browsing Journals by Author "Abdallah, Salwa M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Biodegradable Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19 and Anti-Multidrug Resistant Bacteria EvaluationAlshabanah, Latifah Abdullah; Hagar, Mohamed; Al-Mutabagani, Laila A.; Abozaid, Ghada M.; Abdallah, Salwa M.; Ahmed, Hoda; Hassanin, Ahmed H.; Shehata, Nader (MDPI, 2021-07-10)Biodegradable nanofibrous hybrid membranes of polyvinyl alcohol (PVA) with ZnO and CuO nanoparticles were manufactured and characterized, and their anti-COVID-19 and anti-multidrug resistant bacteria activities were also evaluated. The morphological structures of the prepared PVA composites nanofibers were observed by scanning electron microscope (SEM), which revealed a homogenous pattern of the developed nanofibers, with an average fibrous diameter of 200–250 nm. Moreover, the results of the SEM showed that the fiber size changed with the type and the concentration of the metal oxide. Moreover, the antiviral and antibacterial potential capabilities of the developed nanofibrous membranes were tested in blocking the viral fusion of SARS-COV-2, as a representative activity for COVID-19 deactivation, as well as for their activity against a variety of bacterial strains, including multi-drug resistant bacteria (MDR). The results revealed that ZnO loaded nanofibers were more potent antiviral agents than their CuO analogues. This antiviral action was attributed to the fact that inorganic metallic compounds have the ability to extract hydrogen bonds with viral proteins, causing viral rupture or morphological changes. On the other hand, the anti-multi-drug resistant activity of the prepared nanofibers was also evaluated using two techniques; the standard test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions and the standard test method for determining the activity of incorporated antimicrobial agents in polymeric or hydrophobic materials. Both techniques proved the superiority of the ZnO loaded nanofibers over the CuO loaded fibers. The results of the antiviral and antibacterial tests showed the effectiveness of such nanofibrous formulas, not only for medical applications, but also for the production of personal protection equipment, such as gowns and textiles.
- Elastic Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19, and Anti-Colistin Resistant Bacteria EvaluationAlshabanah, Latifah Abdullah; Omran, Nada; Elwakil, Bassma H.; Hamed, Moaaz T.; Abdallah, Salwa M.; Al-Mutabagani, Laila A.; Wang, Dong; Liu, Qiongzhen; Shehata, Nader; Hassanin, Ahmed H.; Hagar, Mohamed (MDPI, 2021-11-18)Herein, in the present work two series of thermoplastic polyurethane (TPU) nanofibers were manufactured using the electrospinning techniques with ZnO and CuO nanoparticles for a potential use as an elastic functional layer in antimicrobial applications. Percentages of 0%, 2 wt%, and 4 wt% of the nanoparticles were used. The morphological characterization of the electrospun TPU and TPU/NPs composites nanofibers were observed by using scanning electron microscopy to show the average fiber diameter and it was in the range of 90–150 nm with a significant impact of the nanoparticle type. Mechanical characterization showed that TPU nanofiber membranes exhibit excellent mechanical properties with ultra-high elastic properties. Elongation at break reached up to 92.5%. The assessment of the developed nanofiber membranes for medical and personal protection applications was done against various colistin resistant bacterial strains and the results showed an increment activity by increasing the metal oxide concentration up to 83% reduction rate by using TPU/ZnO 4% nanofibers against K. pneumoniae strain 10. The bacterial growth was completely eradicated after 8 and 16 h incubation with TPU/ZnO and TPU/CuO nanofibers, respectively. The nanofibers SEM study reveals the adsorption of the bacterial cells on the metal oxides nanofibers surface which led to cell lysis and releasing of their content. Finally, in vitro study against Spike S-protein from SARS-CoV-2 was also evaluated to investigate the potent effectiveness of the proposed nanofibers in the virus deactivation. The results showed that the metal oxide concentration is an effective factor in the antiviral activity due to the observed pattern of increasing the antibacterial and antiviral activity by increasing the metal oxide concentration; however, TPU/ZnO nanofibers showed a potent antiviral activity in relation to TPU/CuO.
- Hybrid Nanofibrous Membranes as a Promising Functional Layer for Personal Protection Equipment: Manufacturing and Antiviral/Antibacterial AssessmentsAlshabanah, Latifah Abdullah; Hagar, Mohamed; Al-Mutabagani, Laila A.; Abozaid, Ghada M.; Abdallah, Salwa M.; Shehata, Nader; Ahmed, Hoda; Hassanin, Ahmed H. (MDPI, 2021-05-28)In this research work, nanofibrous hybrids are manufactured, characterized, and assessed as active antiviral and antibacterial membranes. In more detail, both polyvinyl alcohol (PVA) and thermoplastic polyurethane (TPU) nanofibrous (NF) membranes and their composites with embedded silver nanoparticles (Ag NPs) are manufactured by an electrospinning process. Their morphological structures have been investigated by a scanning electron microscope (SEM) which revealed a homogenous distribution and almost beads-free fibers in all manufactured samples. Characterization with spectroscopic tools has been performed and proved the successful manufacturing of Ag-incorporated PVA and TPU hybrid nanofibers. The crystalline phase of the nanofibers has been determined using an X-ray diffractometer (XRD) whose patterns showed their crystalline nature at an angle value (2θ) of less than 20°. Subsequent screening of both antiviral and antibacterial potential activities of developed nanohybrid membranes has been explored against different viruses, including SARS-Cov-2 and some bacterial strains. As a novel approach, the current work highlights potential effects of several polymeric hybrids on antiviral and antibacterial activities particularly against SARS-Cov-2. Moreover, two types of polymers have been tested and compared; PVA of excellent biodegradable and hydrophilic properties, and TPU of excellent mechanical, super elasticity, hydrophobicity, and durability properties. Such extreme polymers can serve a wide range of applications such as PPE, filtration, wound healing, etc. Consequently, assessment of their antiviral/antibacterial activities, as host matrices for Ag NPs, is needed for different medical applications. Our results showed that TPU-Ag was more effective than PVA-Ag as HIV-1 antiviral nanohybrid as well as in deactivating spike proteins of SARS-Cov-2. Both TPU-Ag and PVA-Ag nanofibrous membranes were found to have superior antimicrobial performance by increasing Ag concentration from 2 to 4 wt.%. Additionally, the developed membranes showed acceptable physical and mechanical properties along with both antiviral and antibacterial activities, which can enable them to be used as a promising functional layer in Personal Protective Equipment (PPE) such as (surgical gowns, gloves, overshoes, hair caps, etc.). Therefore, the developed functional membranes can support the decrease of both coronavirus spread and bacterial contamination, particularly among healthcare professionals within their workplace settings.