Department of Statistics
Permanent URI for this community
Browse
Browsing Department of Statistics by Author "Agah, Masoud"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Nonparametric Bayesian Functional Clustering with Applications to Racial Disparities in Breast CancerGao, Wenyu; Kim, Inyoung; Nam, Wonil; Ren, Xiang; Zhou, Wei; Agah, Masoud (Wiley, 2024-01)As we have easier access to massive data sets, functional analyses have gained more interest. However, such data sets often contain large heterogeneities, noises, and dimensionalities. When generalizing the analyses from vectors to functions, classical methods might not work directly. This paper considers noisy information reduction in functional analyses from two perspectives: functional clustering to group similar observations and thus reduce the sample size and functional variable selection to reduce the dimensionality. The complicated data structures and relations can be easily modeled by a Bayesian hierarchical model due to its flexibility. Hence, this paper proposes a nonparametric Bayesian functional clustering and peak point selection method via weighted Dirichlet process mixture (WDPM) modeling that automatically clusters and provides accurate estimations, together with conditional Laplace prior, which is a conjugate variable selection prior. The proposed method is named WDPM-VS for short, and is able to simultaneously perform the following tasks: (1) Automatic cluster without specifying the number of clusters or cluster centers beforehand; (2) Cluster for heterogeneously behaved functions; (3) Select vibrational peak points; and (4) Reduce noisy information from the two perspectives: sample size and dimensionality. The method will greatly outperform its comparison methods in root mean squared errors. Based on this proposed method, we are able to identify biological factors that can explain the breast cancer racial disparities.
- Scalable nanolaminated SERS multiwell cell culture assayRen, Xiang; Nam, Wonil; Ghassemi, Parham; Strobl, Jeannine S.; Kim, Inyoung; Zhou, Wei; Agah, Masoud (Springer Nature, 2020)This paper presents a new cell culture platform enabling label-free surface-enhanced Raman spectroscopy (SERS) analysis of biological samples. The platform integrates a multilayered metal-insulator-metal nanolaminated SERS substrate and polydimethylsiloxane (PDMS) multiwells for the simultaneous analysis of cultured cells. Multiple cell lines, including breast normal and cancer cells and prostate cancer cells, were used to validate the applicability of this unique platform. The cell lines were cultured in different wells. The Raman spectra of over 100 cells from each cell line were collected and analyzed after 12 h of introducing the cells to the assay. The unique Raman spectra of each cell line yielded biomarkers for identifying cancerous and normal cells. A kernel-based machine learning algorithm was used to extract the high-dimensional variables from the Raman spectra. Specifically, the nonnegative garrote on a kernel machine classifier is a hybrid approach with a mixed nonparametric model that considers the nonlinear relationships between the higher-dimension variables. The breast cancer cell lines and normal breast epithelial cells were distinguished with an accuracy close to 90%. The prediction rate between breast cancer cells and prostate cancer cells reached 94%. Four blind test groups were used to evaluate the prediction power of the SERS spectra. The peak intensities at the selected Raman shifts of the testing groups were selected and compared with the training groups used in the machine learning algorithm. The blind testing groups were correctly predicted 100% of the time, demonstrating the applicability of the multiwell SERS array for analyzing cell populations for cancer research.