Department of Biological Sciences
Permanent URI for this community
Browse
Browsing Department of Biological Sciences by Author "Abdelfattah, Ahmed"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Assembly and dynamics of the apple carposphere microbiome during fruit development and storageZhimo, V. Yeka; Kumar, Ajay; Biasi, Antonio; Abdelfattah, Ahmed; Sharma, Vijay Kumar; Salim, Shoshana; Feygenberg, Oleg; Bartuv, Rotem; Freilich, Shiri; Whitehead, Susan R.; Wisniewski, Michael; Droby, Samir (Frontiers, 2022-08-09)Microbial communities associated with fruit can contribute to quality and pathogen resistance, but little is known about their assembly and dynamics during fruit development and storage. Three apple cultivars growing under the same environmental conditions were utilized to examine the apple carposphere microbiome composition and structure at different developmental stages and storage. There was a significant effect (Adonis, p <= 0.001) of fruit genotype and its developmental stages and storage times on the fruit surface microbial assemblage and a strong temporal microbial community succession was detected (Mantel test: R <= 0.5, p = 0.001) in both bacterial and fungal communities. A set of 15 bacterial and 35 fungal core successional taxa and members exhibiting differential abundances at different fruit stages were identified. For the first time, we show the existence of underlying universal dynamics in the assembly of fruit-associated microbiomes. We also provide evidence of strong microbial cross-domain associations and uncover potential microbe-microbe correlations in the apple carposphere. Together our findings shed light on how the fruit carposphere assemble and change over time, and provide new insights into fruit microbial ecology.
- Changes in the Fungal Community Assembly of Apple Fruit Following Postharvest Application of the Yeast Biocontrol Agent Metschnikowia fructicolaBiasi, Antonio; Zhimo, V. Yeka; Kumar, Ajay; Abdelfattah, Ahmed; Salim, Shoshana; Feygenberg, Oleg; Wisniewski, Michael; Droby, Samir (MDPI, 2021-10-04)Recently, increasing focus has been placed on exploring fruit microbiomes and their association with their hosts. Investigation of the fruit surface microbiome of apple has revealed variations in the composition and structure depending on management practices, phenological stages, and spatial distribution on the fruit itself. However, the fate of the fruit surface microbiome assembly and dynamics in apple following interventions such as the application of biocontrol agents remains unknown. The objective of the study was to explore the effect of a postharvest application of a yeast biocontrol agent, Metschnikowia fructicola, on the composition of the epiphytic fungal microbiota on apples during cold storage. Our results demonstrated that the applied biocontrol agent, M. fructicola, persisted in high abundance (>28% relative abundance) on the fruit surface throughout the storage period. The biocontrol application significantly decreased the richness and caused a significant shift in the overall composition and structure of the fungal microbiome relative to untreated or water-treated controls. The yeast application reduced the abundance of several apple fungal pathogens, namely, Alternaria, Aspergillus, Comoclatris, Stemphylium, Nigrospora, Penicillium, and Podosphaera, throughout the cold storage period.
- Contrasting effects of genotype and root size on the fungal and bacterial communities associated with apple rootstocksLiu, Jia; Abdelfattah, Ahmed; Wasserman, Birgit; Wisniewski, Michael; Droby, Samir; Fazio, Gennaro; Mazzola, Mark; Wu, Xuehong (Oxford University Press, 2022-01-05)The endophytic microbiome of plants is believed to have a significant impact on its physiology and disease resistance, however, the role of host genotype in determining the composition of the endophytic microbiome of apple root systems remains an open question that has important implications for defining breeding objectives. In the current study, the bacterial and fungal microbiota associated with four different apple rootstocks planted in April, 2018 in the same soil environment and harvested in May, 2019 were evaluated to determine the role of genotype on the composition of both the bacterial and fungal communities. Results demonstrated a clear impact of genotype and root size on microbial composition and diversity. The fungal community was more affected by plant genotype whereas the bacterial community was shaped by root size. Fungal and bacterial abundance was equal between different-sized roots however, significantly higher microbial counts were detected in rhizosphere samples compared to root endosphere samples. This study provides information that can be used to develop a comprehensive and readily applicable understanding of the impact of genotype and environmental factors on the establishment of plant microbiome, as well as its potential function and impact on host physiology.
- Effect of Washing, Waxing and Low-Temperature Storage on the Postharvest Microbiome of AppleAbdelfattah, Ahmed; Whitehead, Susan R.; Macarisin, Dumitru; Liu, Jia; Burchard, Erik; Freilich, Shiri; Dardick, Christopher; Droby, Samir; Wisniewski, Michael (MDPI, 2020-06-23)There is growing recognition of the role that the microbiome plays in the health and physiology of many plant species. However, considerably less research has been conducted on the postharvest microbiome of produce and the impact that postharvest processing may have on its composition. Here, amplicon sequencing was used to study the effect of washing, waxing, and low-temperature storage at 2 °C for six months on the bacterial and fungal communities of apple calyx-end, stem-end, and peel tissues. The results of the present work reveal that tissue-type is the main factor defining fungal and bacterial diversity and community composition on apple fruit. Both postharvest treatments and low temperature storage had a strong impact on the fungal and bacterial diversity and community composition of these tissue types. Distinct spatial and temporal changes in the composition and diversity of the microbiota were observed in response to various postharvest management practices. The greatest impact was attributed to sanitation practices with major differences among unwashed, washed and washed-waxed apples. The magnitude of the differences, however, was tissue-specific, with the greatest impact occurring on peel tissues. Temporally, the largest shift occurred during the first two months of low-temperature storage, although fungi were more affected by storage time than bacteria. In general, fungi and bacteria were impacted equally by sanitation practices, especially the epiphytic microflora of peel tissues. This research provides a foundation for understanding the impact of postharvest management practices on the microbiome of apple and its potential subsequent effects on postharvest disease management and food safety.
- Evidence for host-microbiome co-evolution in appleAbdelfattah, Ahmed; Tack, Ayco J. M.; Wasserman, Birgit; Liu, Jia; Berg, Gabriele; Norelli, John; Droby, Samir; Wisniewski, Michael (Wiley, 2022-06)Plants evolved in association with a diverse community of microorganisms. The effect of plant phylogeny and domestication on host-microbiome co-evolutionary dynamics are poorly understood. Here we examined the effect of domestication and plant lineage on the composition of the endophytic microbiome of 11 Malus species, representing three major groups: domesticated apple (M. domestica), wild apple progenitors, and wild Malus species. The endophytic community of M. domestica and its wild progenitors showed higher microbial diversity and abundance than wild Malus species. Heirloom and modern cultivars harbored a distinct community composition, though the difference was not significant. A community-wide Bayesian model revealed that the endophytic microbiome of domesticated apple is an admixture of its wild progenitors, with clear evidence for microbiome introgression, especially for the bacterial community. We observed a significant correlation between the evolutionary distance of Malus species and their microbiome. This study supports co-evolution between Malus species and their microbiome during domestication. This finding has major implications for future breeding programs and our understanding of the evolution of plants and their microbiomes.
- Global analysis of the apple fruit microbiome: are all apples the same?Abdelfattah, Ahmed; Freilich, Shiri; Bartuv, Rotem; Zhimo, V. Yeka; Kumar, Ajay; Biasi, Antonio; Salim, Shoshana; Feygenberg, Oleg; Burchard, Erik; Dardick, Christopher; Liu, Jia; Khan, Awais; Ellouze, Walid; Ali, Shawkat; Spadaro, Davide; Torres, Rosario; Teixido, Neus; Ozkaya, Okan; Buehlmann, Andreas; Vero, Silvana; Mondino, Pedro; Berg, Gabriele; Wisniewski, Michael; Droby, Samir (2021-03-18)We present the first worldwide study on the apple (Malus x domestica) fruit microbiome that examines questions regarding the composition and the assembly of microbial communities on and in apple fruit. Results revealed that the composition and structure of the fungal and bacterial communities associated with apple fruit vary and are highly dependent on geographical location. The study also confirmed that the spatial variation in the fungal and bacterial composition of different fruit tissues exists at a global level. Fungal diversity varied significantly in fruit harvested in different geographical locations and suggests a potential link between location and the type and rate of postharvest diseases that develop in each country. The global core microbiome of apple fruit was represented by several beneficial microbial taxa and accounted for a large fraction of the fruit microbial community. The study provides foundational information about the apple fruit microbiome that can be utilized for the development of novel approaches for the management of fruit quality and safety, as well as for reducing losses due to the establishment and proliferation of postharvest pathogens. It also lays the groundwork for studying the complex microbial interactions that occur on apple fruit surfaces.
- Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant PathogensPiombo, Edoardo; Abdelfattah, Ahmed; Droby, Samir; Wisniewski, Michael; Spadaro, Davide; Schena, Leonardo (2021-01)Globalization has a dramatic effect on the trade and movement of seeds, fruits and vegetables, with a corresponding increase in economic losses caused by the introduction of transboundary plant pathogens. Current diagnostic techniques provide a useful and precise tool to enact surveillance protocols regarding specific organisms, but this approach is strictly targeted, while metabarcoding and shotgun metagenomics could be used to simultaneously detect all known pathogens and potentially new ones. This review aims to present the current status of high-throughput sequencing (HTS) diagnostics of fungal and bacterial plant pathogens, discuss the challenges that need to be addressed, and provide direction for the development of methods for the detection of a restricted number of related taxa (specific surveillance) or all of the microorganisms present in a sample (general surveillance). HTS techniques, particularly metabarcoding, could be useful for the surveillance of soilborne, seedborne and airborne pathogens, as well as for identifying new pathogens and determining the origin of outbreaks. Metabarcoding and shotgun metagenomics still suffer from low precision, but this issue can be limited by carefully choosing primers and bioinformatic algorithms. Advances in bioinformatics will greatly accelerate the use of metagenomics to address critical aspects related to the detection and surveillance of plant pathogens in plant material and foodstuffs.