Center for Power Electronics Systems
Permanent URI for this community
Browse
Browsing Center for Power Electronics Systems by Author "Dong, Dong"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Anti-islanding detection for three-phase distributed generation(United States Patent and Trademark Office, 2017-04-25)Wobbling the operating frequency of a phase-locked loop (PLL), preferably by adding a periodic variation is feedback gain or delay in reference signal phase allows the avoidance of any non-detection zone that might occur due to exact synchronization of the phase locked loop operating frequency with a reference signal. If the change in PLL operating frequency is periodic, it can be made of adequate speed variation to accommodate and time requirement for islanding detection or the like when a reference signal being tracked by the PLL is lost. Such wobbling of the PLL operating frequency is preferably achieved by addition a periodic variable gain in a feedback loop and/or adding a periodically varying phase delay in a reference signal and/or PLL output.
- Design of a 10 kV SiC MOSFET-based high-density, high-efficiency, modular medium-voltage power converterMocevic, Slavko; Yu, Jianghui; Fan, Boran; Sun, Keyao; Xu, Yue; Stewart, Joshua; Rong, Yu; Song, He; Mitrovic, Vladimir; Yan, Ning; Wang, Jun; Cvetkovic, Igor; Burgos, Rolando; Boroyevich, Dushan; DiMarino, Christina; Dong, Dong; Motwani, Jayesh Kumar; Zhang, Richard (IEEE, 2022-03)Simultaneously imposed challenges of high-voltage insulation, high dv/dt, high-switching frequency, fast protection, and thermal management associated with the adoption of 10 kV SiC MOSFET, often pose nearly insurmountable barriers to potential users, undoubtedly hindering their penetration in medium-voltage (MV) power conversion. Key novel technologies such as enhanced gatedriver, auxiliary power supply network, PCB planar dc-bus, and high-density inductor are presented, enabling the SiC-based designs in modular MV converters, overcoming aforementioned challenges. However, purely substituting SiC design instead of Sibased ones in modular MV converters, would expectedly yield only limited gains. Therefore, to further elevate SiC-based designs, novel high-bandwidth control strategies such as switching-cycle control (SCC) and integrated capacitor-blocked transistor (ICBT), as well as high-performance/high-bandwidth communication network are developed. All these technologies combined, overcome barriers posed by state-of-the-art Si designs and unlock system level benefits such as very high power density, high-efficiency, fast dynamic response, unrestricted line frequency operation, and improved power quality, all demonstrated throughout this paper.
- Global Intergrid for Sustainable Energy AbundanceBoroyevich, Dushan; Cvetkovic, Igor; Dong, Dong (IEEE Power Electronics Society, 2022-06-04)Invited Poster for Session on Brainstorming for Game-Changing Ideas.