Browsing by Author "Aberle, Matthew A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Effects of Bird Feeder Density on the Behavior and Ecology of a Feeder-Dependent Songbird: Patterns and Implications for Disease TransmissionAberle, Matthew A. (Virginia Tech, 2018-09-18)Anthropogenic resource provisioning of wildlife has increasingly been hypothesized to alter pathogen spread. Although bird feeding is the most widespread form of intentional wildlife provisioning, we know relatively little about how the degree of anthropogenic feeding at a site impacts wild birds in ways relevant to disease transmission. We manipulated the density of bird feeders (low versus high) available at otherwise similar sites and tracked the local abundance, body condition (scaled-mass index), feeding behavior, and movement across the landscape in wild house finches (Haemorhous mexicanus), a feeder-dependent species subject to outbreaks of a contagious pathogen commonly spread at feeders. The local abundance of house finches was significantly higher at sites with high feeder density but, surprisingly, finches at high-density feeder sites had poorer body condition than those at low-density sites. Behaviorally, birds at high-density feeder sites had longer average feeding bouts and spent more time per day on feeders than birds at low-density feeder sites. Further, birds first recorded at low-density feeder sites were more likely to move to a neighboring high-density feeder site than vice versa. Overall, because local abundance and time spent on feeders have been linked with the risk of disease outbreaks in this species, effects of bird feeder density on both traits may, in turn, influence disease dynamics in house finches. Our results suggest that heterogeneity in the density of bird feeders can have diverse effects on wild birds, with potential consequences for disease transmission.
- Experimental manipulation of a signal trait reveals complex phenotype-behaviour coordinationLevin, Iris I.; Fosdick, Bailey K.; Tsunekage, Toshi; Aberle, Matthew A.; Burns, Christine M. Bergeon; Hund, Amanda K.; Safran, Rebecca J. (Springer Nature, 2018-10-19)Animals use morphological signals such as ornamental traits or weaponry to mediate social interactions, and the extent of signal trait elaboration is often positively associated with reproductive success. By demonstrating relationships between signal traits and fitness, researchers often make inferences about how behaviour operates to shape those outcomes. However, detailed information about fine-scale individual behaviour, and its physiological basis, can be difficult to obtain. Here we show that experimental manipulations to exaggerate a signal trait (plumage colour) and concomitant changes in testosterone and stress-induced corticosterone levels altered social interactivity between manipulated males and their social mates. On average, darkened males did not have higher levels of interactivity than unmanipulated males; however, males who experienced a greater shift in colour (pale to dark), a larger, positive change in testosterone levels, and a dampened stress-induced corticosterone response had a larger increase in the number of interactions with their social mate post-manipulation compared to pre-manipulation. This work provides new insights into the integration and real-time flexibility of multivariate phenotypes and direct evidence for the role of social interactions in pair bond maintenance.
- High virulence is associated with pathogen spreadability in a songbird–bacterial systemHawley, Dana M.; Thomason, Courtney A.; Aberle, Matthew A.; Brown, Richard; Adelman, James S. (Royal Society Publishing, 2023-01-11)How directly transmitted pathogens benefit from harming hosts is key to understanding virulence evolution. It is recognized that pathogens benefit from high within-host loads, often associated with virulence. However, high virulence may also directly augment spread of a given amount of pathogen, here termed ‘spreadability’. We used house finches and the conjunctival pathogen Mycoplasma gallisepticum to test whether two components of virulence—the severity of conjunctival inflammation and behavioural morbidity produced—predict pathogen spreadability. We applied ultraviolet powder around the conjunctiva of finches that were inoculated with pathogen treatments of distinct virulence and measured within-flock powder spread, our proxy for ‘spreadability’. When compared to uninfected controls, birds infected with a high-virulence, but not low-virulence, pathogen strain, spread significantly more powder to flockmates. Relative to controls, highvirulence treatment birds both had more severe conjunctival inflammation—which potentially facilitated powder shedding—and longer bouts on feeders, which serve as fomites. However, food peck rates and displacements with flockmates were lowest in high-virulence treatment birds relative to controls, suggesting inflammatory rather than behavioural mechanisms likely drive augmented spreadability at high virulence. Our results suggest that inflammation associated with virulence can facilitate pathogen spread to conspecifics, potentially favouring virulence evolution in this system and others.