Browsing by Author "Adams, Mary Beth"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Acid deposition effects on soil chemistry and forest growth on the Monongahela National ForestElias, Patricia Elena (Virginia Tech, 2008-07-28)Acid deposition (AD) results largely from the combustion of fossil fuels, and has been found to negatively impact forest ecosystems. AD may acidify soils through base cation leaching or Al mobilization, may cause accumulation of nitrates and sulfates in soils, and in some cases has been related to forest decline. The Monongahela National Forest (MNF) lies downwind from many sources of AD pollution, and average deposition pH is around 4.4. Therefore, managers are concerned about the possible deleterious effects of AD on the forest ecosystem. During the 2006 Forest Plan revision, evaluation of site sensitivity to acidification was specifically stated as a step in the Forest's adaptive management process. To meet this management objective, forest practitioners must understand the effects AD has on the forest, prescribe appropriate practices, and be able to monitor for future changes. To address the needs of MNF managers we used Forest Inventory and Analysis (FIA) sites to evaluate forest growth patterns on the Forest and determined the relationship between growth and key indicators of soil acidity. Furthermore, we used those relationships to create a map of site resistance to acidification across the MNF. To further develop a monitoring scheme we assessed two soil sampling protocols and two soil analysis methods for their suitability for monitoring AD-related changes in soil chemistry. Additionally, we evaluated the utility of dendrochronological and foliar sampling as AD-specific monitoring methods. Across all FIA sites on the MNF periodic mean annual volume increment (PMAVI) ranged from -9.5 m³ha⁻¹yr¹ to 11.8 m³ha⁻¹yr¹, suggesting lower-than-expected growth on two-thirds of the sites. Growth was compared to soil indicators of acidity on 30 FIA sites. In the surface horizon, effective base saturation (+), Ca concentration (+), base saturation (+), K concentration (+), Fe concentration (-), Ca/Al molar ratio (+), and Mg/Al molar ratio (+), were correlated with PMAVI (p ≤ 0.1). In the subsurface horizon pH(w) (+), effective base saturation (+), Al concentration (-), and K concentration (-) were correlated with PMAVI. Site resistance to acidification was mapped based on site parent material, aspect, elevation, soil depth, and soil texture. There was a significant (p ≤ 0.1) positive correlation between PMAVI and a resistance index developed using five soil and site factors. Resistance was also compared with key soil indicators of AD-induced decline on 28 sites across the forest, and pH, effective base saturation, and Al content were found to be the best indicators related to resistance index. Resistance index was used to create a map of the MNF, of which 14% was highly resistant (RI ≥ 0.7), 57% was moderately resistant (0.7 > RI > 0.45) and 29% was slightly resistant (RI ≤ 0.45). The first of our monitoring program evaluations compared soil sampling and analysis methods on 30 FIA plots. Analyses of variance showed that soil pH, effective base saturation, Ca/Al molar ratio, and sum of bases varied significantly with sampling protocol. We also compared lab analyses methods and found that if sampling by horizon, a linear relationship can be used to estimate Ca/AlSrCl₂ ratio using NH₄Cl extractions. The second monitoring approach evaluated the utility of a northern red oak (Quercus rubra L.) dendrochronology on two FIA plots. This analysis suggests that pollution on the MNF caused a decrease in growth rate during the 50-year period from 1940 to 1990. There were no differences among ring width increment and basal area increment between the two sites. From 1900 to 2007 the two sites showed 58.5% similarity in growth trends, but these could not be attributed to a dissimilar influence of AD. The third monitoring approach evaluated the relationship between foliar and soil chemical indicators. Across FIA plots, nutrient concentrations varied by tree species. The first year results from a potted-seedling study suggest that soil acidity influences growth, and foliar concentrations are related to growth rates. This evaluation of the effects of AD on the MNF can be used to develop adaptive management plans and a monitoring program that will meet the AD-related objectives of the 2006 Forest Management plan.
- Carbon and nitrogen cycling in watersheds of contrasting vegetation types in the Fernow Experimental Forest, West VirginiaKelly, Charlene Nicole (Virginia Tech, 2010-04-01)Increased anthropogenic deposition of nitrogen (N) and land-use changes associated with planted forests have important implications for sustainable forest management and associated water quality. The purpose of the research for this dissertation was to explore how N deposition will affect the long-term health, productivity, and carbon (C) and N sequestration of conifer and hardwood forest types by examining the mechanisms controlling N cycling and NO3-N production in two watersheds with contrasting vegetation at the Fernow Experimental Forest (FEF), West Virginia. I utilized watershed C and N budgets to account for differences in stream export of NO3-N from streams draining adjacent watersheds containing (i) planted Norway spruce (Picea abies) and (ii) native Appalachian hardwoods. I also investigated spatial and temporal patterns of dissolved C and N across both watersheds and identified key soil properties associated with NO3-N in soil solution and streamwater. In a third study, I performed a soil inoculation and incubation experiment, which utilized soil from both watersheds, mixed in ratios in order to create a gradient of soil chemical and biotic characteristics. Important differences in biogeochemical cycling of C and N were documented in the watersheds after nearly 40 years of influence by contrasting vegetation. Total C and N pools were 28% and 35% lower in the spruce watershed than the hardwood watershed, respectively. Results also identify vegetation-mediated differences in soil characteristics, with lower soil pH and base cations, and higher extractable aluminum and C:N ratios measured in the spruce soil as compared to the native hardwood soil. Establishment of a spruce monoculture at the FEF significantly altered N cycling, depleted N stores, increased soil acidity, and altered organic matter dynamics, thus leading to low net nitrification rates. Carbon and N properties and processes in the soil profile should be taken into consideration in forests managed for ecosystem services including C sequestration and improvement or maintenance of water quality through alleviation of N inputs into aquatic ecosystems.
- Determining Habitat Associations of Virginia and Carolina Northern Flying Squirrels in the Appalachian Mountains from Bioacoustic and Telemetry SurveysDiggins, Corinne Ashley (Virginia Tech, 2016-08-23)The Virginia northern flying squirrel (Glaucomys sabrinus fuscus) and the Carolina northern flying squirrel (G. s. coloratus) are geographically isolated subspecies of the northern flying squirrel found in montane conifer-northern hardwood forests the Appalachian Mountains of the eastern United States. Both subspecies were listed under the Endangered Species Act in 1985 as endangered, and accordingly, the Virginia northern flying squirrel and the Carolina northern flying squirrel are considered high conservation priorities by state and federal agencies. Although the listing prompted work to determine the broad distribution and habitat associations of both subspecies, numerous data gaps remain, particularly with regard to habitat management and development of efficient monitoring techniques. Regional interest in restoration of red spruce (Picea rubens) forests in the central and southern Appalachian Mountains, considered to be the flying squirrels' primary habitat, increases the importance of understanding habitat selection and managers' ability to detect squirrels at multiple spatial and temporal scales. I compared two novel survey techniques (ultrasonic acoustics and camera trapping) to a traditional technique (live trapping) to determine which method had higher probability of detection (POD) and lower latency to detection (LTD, number of survey nights to initial detection) of northern flying squirrels in the region. Both novel techniques performed better than the traditional techniques with higher POD and lower LTD. I found that ultrasonic acoustics and camera trapping had similar POD, whereas LTD was significantly lower with ultrasonic acoustics versus camera trapping. Additionally, the ability to distinguish between northern flying squirrels and the parapatric southern flying squirrel (G. volans) also is possible with ultrasonic acoustics, but not with camera trapping. This ultimately makes ultrasonic acoustics the most effective and efficient method to obtain detection/non-detection data. To better inform management decisions and activities (i.e., red spruce restoration), this method should be used in conjunction with existing traditional monitoring techniques that provide demographic data such as nest boxes. I assessed habitat selection of radio-collared Virginia and Carolina northern flying squirrels at multiple spatial scales with use-availability techniques. I analyzed field data from paired telemetry and random points and determined Virginia northern flying squirrels microhabitat (within-stand habitat) selection showed preference for conifer-dominant stands with deep organic horizons, a factor that might be directly linked to food (hypogeal fungi) availability. Similar to previous studies on the Virginia northern flying squirrel on the landscape- and stand-level using Euclidean distance based analysis, Carolina northern flying squirrels also selectively preferred montane conifer forests in greater proportion than their availability on the landscape. Additionally, Carolina northern flying squirrels did not select for or against northern hardwood forests regardless of availability on the landscape. Habitat preference of both subspecies indicates that red spruce restoration activities may be important for the persistence of Appalachian northern flying squirrels into an uncertain future, as anthropogenic climate change may cause further reduction of the quality and extent of high-elevation montane conifer forests in the region.
- The Forestry Reclamation Approach: An Essential Tool for Controlling Invasive Exotic Plants on Active Mine SitesZipper, Carl E.; Angel, Patrick N.; Adams, Mary Beth; Sanderson, Tyler; Sena, Kenton; Barton, Christopher D.; Agouridis, Carmen T. (Appalachian Regional Reforestation Initiative, 2019-05)Mining companies use the Forestry Reclamation Approach (FRA) when reclaiming mined land with the aim of establishing functional forests as a post- mining land use. Invasive exotic plant species (IES) can interfere with successful reforestation. Thus, reclamation of active mine sites should aim to prevent colonization of IES plants if native forest restoration is the end goal. Once IES become established, they are difficult to eradicate and can potentially delay bond release. Therefore, it is best to manage for IES before they become established. Following the FRA is a good way to accomplish this. In Advisory No. 16 (Adams et al. 2019), the problems of IES on legacy and abandoned mine sites were described, along with detailed descriptions of common IES plants and control measures. This Advisory (No. 17) explains the issues related to IES plants on active mine sites and presents guidance on controlling IES to ensure successful reforestation.
- Managing Invasive Exotic Plant Species on Legacy Mine LandsAdams, Mary Beth; Sanderson, Tyler; Sena, Kenton; Barton, Christopher D.; Agouridis, Carmen T.; Angel, Patrick N.; Zipper, Carl E. (Appalachian Regional Reforestation Initiative, 2019-02)More than 2 million acres have been surface mined in the Appalachians (Zipper et al. 2011; OSMRE). Today, many mining firms are attempting to establish functional forests as a post-mining land use. However, many of the lands that were surface-mined for coal and reclaimed to meet legal standards in the past do not support thriving forest ecosystems. These lands, referred to as “legacy” surface mines (Burger et al. 2013), are often dominated by invasive exotic plant species (IES) which can interfere with successful reforestation (Zipper et al. 2011b). This advisory explains the issues related to IES plants on legacy mine sites. It also presents guidance on methods to combat and control the spread of IES to ensure successful reforestation. Finally, it describes characteristics of some exotic invasive plant species that are problematic on mine sites (see Appendix).
- Re-Establishing Pollinator Habitat on Mined Lands Using the Forestry Reclamation ApproachHorn, Tammy; Angel, Patrick N.; Zipper, Carl E.; Ulyshen, Michael; French, Michael; Burger, James A.; Adams, Mary Beth (Appalachian Regional Reforestation Initiative, 2017-02)Pollinators are animals that play an essential role in the reproduction of many plants by transferring genetic material, in the form of pollen, from male to female flower parts. Because pollinator communities are under threat both in the US and worldwide, there is great interest in incorporating the needs of pollinators into habitat restoration plans. Forests provide many important resources such as nectar and pollen throughout the warm-weather seasons as well as critical nesting habitats. This Advisory describes mine reforestation strategies that can encourage and support pollinator conservation in the eastern US. We also provide background information concerning pollinators and their conservation needs.
- Stream Runoff and Nitrate Recovery Times After Forest Disturbance in the USA and JapanOda, Tomoki; Green, Mark B.; Urakawa, Rieko; Scanlon, Todd M.; Sebestyen, Stephen D.; McGuire, Kevin J.; Katsuyama, Masanori; Fukuzawa, Karibu; Adams, Mary Beth; Ohte, Nobuhito (American Geophysical Union, 2018-09-01)To understand mechanisms of long-term hydrological and biogeochemical recovery after forest disturbance, it is important to evaluate recovery times (i.e., time scales associated with the return to baseline or predisturbance conditions) of stream runoff and nitrate concentration. Previous studies have focused on either the response of runoff or nitrate concentration, and some have specifically addressed recovery times following disturbance. However, controlling factors have not yet been elucidated. Knowing these relationships will advance our understanding of each recovery process. The objectives of this study were to explore the relationship between runoff and nitrate recovery times and identify potential factors controlling each. We acquired long-term runoff and stream water nitrate concentration data from 20 sites in the USA and Japan. We then examined the relationship between runoff and nitrate recovery times at these multiple sites and use these relationships to discuss the ecosystem dynamics following forest disturbance. Nitrate response was detected at all study sites, while runoff responses were detected at all sites with disturbance intensities greater than 75% of the catchment area. The runoff recovery time was significantly correlated with the nitrate recovery time for catchments that had a runoff response. For these catchments, hydrological recovery times were slower than nitrate recovery times. The relationship between these two recovery times suggests that forest regeneration was a common control on both recovery times. However, the faster recovery time for nitrate suggests that nitrogen was less available or less mobile in these catchments than water.
- Woodland salamander responses to a shelterwood harvest-prescribed burn silvicultural treatment within Appalachian mixed-oak forestsMahoney, Kathleen R.; Russell, Kevin R.; Ford, W. Mark; Rodrigue, Jane L.; Riddle, Jason D.; Schuler, Thomas M.; Adams, Mary Beth (2016-01-01)Forest management practices that mimic natural canopy disturbances, including prescribed fire and timber harvests, may reduce competition and facilitate establishment of favorable vegetative species within various ecosystems. Fire suppression in the central Appalachian region for almost a century has contributed to a transition from oak-dominated to more mesophytic, fire-intolerant forest communities. Prescribed fire coupled with timber removal is currently implemented to aid in oak regeneration and establishment but responses of woodland salamanders to this complex silvicultural system is poorly documented. The purpose of our research was to determine how woodland salamanders respond to shelter-wood harvests following successive burns in a central Appalachian mixed-oak forest. Woodland salamanders were surveyed using coverboard arrays in May, July, and August September 2011 and 2012. Surveys were conducted within fenced shelterwood-burn (prescribed fires, shelterwood harvest, and fencing to prevent white-tailed deer [Odocoileus virginianus] herbivory), shelterwood-burn (prescribed fires and shelterwood harvest), and control plots. Relative abundance was modeled in relation to habitat variables measured within treatments for mountain dusky salamanders (Desmognathus ochrophaeus), slimy salamanders (Plethodon glutinosus), and eastern red-backed salamanders (Plethodon cinereus). Mountain dusky salamander relative abundance was positively associated with canopy cover and there were significantly more individuals within controls than either shelterwood-burn or fenced shelterwood-burn treatments. Conversely, habitat variables associated with slimy salamanders and eastern red-backed salamanders did not differ among treatments. Salamander age-class structure within controls did not differ from shelterwood-burn or fenced shelterwood-burn treatments for any species. Overall, the woodland salamander assemblage remained relatively intact throughout the shelterwoodburn silvicultural treatment compared to previous research within the same study area that examined pre-harvest fire effects. However, because of the multi-faceted complexities of this specific silvicultural system, continued research is warranted that evaluates long-term, additive impacts on woodland salamanders within managed central Appalachian deciduous forests. Published by Elsevier B.V.