Browsing by Author "Adrian, Rita"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyll-a in north temperate lakesHrycik, Allison R.; Isles, Peter D. F.; Adrian, Rita; Albright, Matthew; Bacon, Linda C.; Berger, Stella A.; Bhattacharya, Ruchi; Grossart, Hans-Peter; Hejzlar, Josef; Hetherington, Amy Lee; Knoll, Lesley B.; Laas, Alo; McDonald, Cory P.; Merrell, Kellie; Nejstgaard, Jens C.; Nelson, Kirsten; Noges, Peeter; Paterson, Andrew M.; Pilla, Rachel M.; Robertson, Dale M.; Rudstam, Lars G.; Rusak, James A.; Sadro, Steven; Silow, Eugene A.; Stockwell, Jason D.; Yao, Huaxia; Yokota, Kiyoko; Pierson, Donald C. (Wiley, 2021-10)Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed-a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs-is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5-53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.
- Ecology under lake iceHampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H.; North, Rebecca L.; Stockwell, Jason D.; Adrian, Rita; Weyhenmeyer, Gesa A.; Arvola, Lauri; Baulch, Helen M.; Bertani, Isabella; Bowman, Larry L., Jr.; Carey, Cayelan C.; Catalan, Jordi; Colom-Montero, William; Domine, Leah M.; Felip, Marisol; Granados, Ignacio; Gries, Corinna; Grossart, Hans-Peter; Haberman, Juta; Haldna, Marina; Hayden, Brian; Higgins, Scott N.; Jolley, Jeff C.; Kahilainen, Kimmo K.; Kaup, Enn; Kehoe, Michael J.; MacIntyre, Sally; Mackay, Anson W.; Mariash, Heather L.; McKay, Robert M.; Nixdorf, Brigitte; Noges, Peeter; Noges, Tiina; Palmer, Michelle; Pierson, Don C.; Post, David M.; Pruett, Matthew J.; Rautio, Milla; Read, Jordan S.; Roberts, Sarah L.; Ruecker, Jacqueline; Sadro, Steven; Silow, Eugene A.; Smith, Derek E.; Sterner, Robert W.; Swann, George E. A.; Timofeyev, Maxim A.; Toro, Manuel; Twiss, Michael R.; Vogt, Richard J.; Watson, Susan B.; Whiteford, Erika J.; Xenopoulos, Marguerite A. (2017-01)Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.
- Long-term population dynamics of dreissenid mussels (Dreissena polymorpha and D. rostriformis): a cross-system analysisStrayer, David L.; Adamovich, Boris, V.; Adrian, Rita; Aldridge, David C.; Balogh, Csilla; Burlakova, Lyubov E.; FriedPetersen, Hannah B.; G-Toth, Laszlo; Hetherington, Amy L.; Jones, Thomas S.; Karatayev, Alexander Y.; Madill, Jacqueline B.; Makarevich, Oleg A.; Marsden, J. Ellen; Martel, Andre L.; Minchin, Dan; Nalepa, Thomas F.; Noordhuis, Ruurd; Robinson, Timothy J.; Rudstam, Lars G.; Schwalb, Astrid N.; Smith, David R.; Steinman, Alan D.; Jeschke, Jonathan M. (Ecological Society of America, 2019-04)Dreissenid mussels (including the zebra mussel Dreissena polymorpha and the quagga mussel D. rostriformis) are among the world's most notorious invasive species, with large and widespread ecological and economic effects. However, their long-term population dynamics are poorly known, even though these dynamics are critical to determining impacts and effective management. We gathered and analyzed 67 long-term (>10 yr) data sets on dreissenid populations from lakes and rivers across Europe and North America. We addressed five questions: (1) How do Dreissena populations change through time? (2) Specifi- cally, do Dreissena populations decline substantially after an initial outbreak phase? (3) Do different measures of population performance (biomass or density of settled animals, veliger density, recruitment of young) follow the same patterns through time? (4) How do the numbers or biomass of zebra mussels or of both species combined change after the quagga mussel arrives? (5) How does body size change over time? We also considered whether current data on long-term dynamics of Dreissena populations are adequate for science and management. Individual Dreissena populations showed a wide range of temporal dynamics, but we could detect only two general patterns that applied across many populations: (1) Populations of both species increased rapidly in the first 1-2 yr after appearance, and (2) quagga mussels appeared later than zebra mussels and usually quickly caused large dedines in zebra mussel populations. We found little evidence that combined Dreissena populations declined over the long term. Different measures of population performance were not congruent; the temporal dynamics of one life stage or population attribute cannot generally be accurately inferred from the dynamics of another. We found no consistent patterns in the long-term dynamics of body size. The long-term dynamics of Dreissena populations probably are driven by the ecological characteristics (e.g., predation, nutrient inputs, water temperature) and their temporal changes at individual sites rather than following a generalized time course that applies across many sites. Existing long-term data sets on dreissenid populations, although dearly valuable, are inadequate to meet research and management needs. Data sets could be improved by standardizing sampling designs and methods, routinely collecting more variables, and increasing support.
- A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory networkBruce, Louise C.; Frassl, Marieke A.; Arhonditsis, George B.; Gal, Gideon; Hamilton, David P.; Hanson, Paul C.; Hetherington, Amy L.; Melack, John M.; Read, Jordan S.; Rinke, Karsten; Rigosi, Anna; Trolle, Dennis; Winslow, Luke A.; Adrian, Rita; Ayala, Ana I.; Bocaniov, Serghei A.; Boehrer, Bertram; Boon, Casper; Brookes, Justin D.; Bueche, Thomas; Busch, Brendan D.; Copetti, Diego; Cortes, Alicia; de Eyto, Elvira; Elliott, J. Alex; Gallina, Nicole; Gilboa, Yael; Guyennon, Nicolas; Huang, Lei; Kerimoglu, Onur; Lenters, John D.; MacIntyre, Sally; Makler-Pick, Vardit; McBride, Chris G.; Moreira, Santiago; Oezkundakci, Deniz; Pilotti, Marco; Rueda, Francisco J.; Rusak, James A.; Samal, Nihar R.; Schmid, Martin; Shatwell, Tom; Snorthheim, Craig; Soulignac, Frederic; Valerio, Giulia; van der Linden, Leon; Vetter, Mark; Vincon-Leite, Brigitte; Wang, Junbo; Weber, Michael; Wickramaratne, Chaturangi; Woolway, R. Iestyn; Yao, Huaxia; Hipsey, Matthew R. (2018-04)The modelling community has identified challenges for the integration and assessment of lake models due to the diversity of modelling approaches and lakes. In this study, we develop and assess a one-dimensional lake model and apply it to 32 lakes from a global observatory network. The data set included lakes over broad ranges in latitude, climatic zones, size, residence time, mixing regime and trophic level. Model performance was evaluated using several error assessment metrics, and a sensitivity analysis was conducted for nine parameters that governed the surface heat exchange and mixing efficiency. There was low correlation between input data uncertainty and model performance and predictions of temperature were less sensitive to model parameters than prediction of thermocline depth and Schmidt stability. The study provides guidance to where the general model approach and associated assumptions work, and cases where adjustments to model parameterisations and/or structure are required. (c) 2017 Published by Elsevier Ltd.