Browsing by Author "Ahlswede, Benjamin James"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Evaluating the influence of establishing pine forests and switchgrass fields on local and global climateAhlswede, Benjamin James (Virginia Tech, 2021-05-18)Humans have extensively altered terrestrial surfaces through land-use and land-cover change. This change has resulted in increased food, fiber, fuel, and wood that is provisioned by ecosystems to support the human population. Unfortunately, the change has also altered climate through carbon emissions and changes in the surface energy balance. Consequently, maximizing both the provisioning and climate regulation services provided by terrestrial ecosystems is a grand challenge facing a growing global population living in a changing climate. The planting of pine forests for timber and carbon storage and switchgrass fields for bioenergy are two land-cover types that can potentially be used for climate mitigation. Importantly, both are highly productive systems representing contrasts in albedo (grass are brighter than pines) and vegetation height (pines are taller than the grass) along with unknown differences in carbon and water balance that influence local to global climate. Here I use eddy-covariance data to investigate how a transition from a perennial bioenergy crop (switchgrass) to a planted pine plantation alters the local surface temperature, global carbon dioxide concentrations, and global energy balance. First, I found that switchgrass and pine ecosystems have very similar local surface temperatures, especially during the grass growing season. After the switchgrass is harvested, surface temperature in the pine forest is much lower than switchgrass because no vegetation is present to facilitate the evaporation of water. The surface temperature in a bare-ground system (a recent clear-cut) was also high relative to the pine and pre-harvest switchgrass ecosystems. This illustrates the importance of maintaining vegetation cover to reduce local surface temperature. Second, I found that the 30-year mean change in global energy balance (i.e., radiative forcing) from planting a pine ecosystem rather than a switchgrass field was positive (pine warms climate) when considering changes in albedo and carbon measured using eddy-covariance systems. When including harvested carbon, pine and switchgrass can have similar global radiative forcing if all harvested pine carbon is stored, but harvested switchgrass carbon is burned. However, no scenarios I explored resulted in a strong negative radiative forcing by the pine ecosystem relative to the switchgrass field. These results show that afforestation or reforestation in the eastern United States may not result in any climate benefit over planting a switchgrass field. However, the presence of vegetation in both ecosystem types offers a clear benefit by cooling local surface temperatures.
- What to plant and where to plant it; Modeling the biophysical effects of North America temperate forests on climate using the Community Earth System ModelAhlswede, Benjamin James (Virginia Tech, 2015-07-21)Forests affect climate by absorbing CO₂ but also by altering albedo, latent heat flux, and sensible heat flux. In this study we used the Community Earth System Model to assess the biophysical effect of North American temperate forests on climate and how this effect changes with location, tree type, and forest management. We calculated the change in annual temperature and energy balance associated with afforestation with either needle leaf evergreen trees (NET) or broadleaf deciduous trees (BDT) and between forests with high and low leaf-area indices (LAI). Afforestation from crops to forests resulted in lower albedo and higher sensible heat flux but no consistent difference in latent heat flux. Forests were consistently warmer than crops at high latitudes and colder at lower latitudes. In North America, the temperature response from afforestation shifted from warming to cooling between 34° N and 40° N for ground temperature and between 21° N and 25° N for near surface air temperature. NET tended to have lower albedo, higher sensible heat flux and warmer temperatures than BDT. The effect of tree PFT was larger than the effect of afforestation in the south and in the mid-Atlantic. Increasing LAI, a proxy for increased management intensity, caused a cooling effect in both tree types, but NET responded more strongly and albedo decreased while albedo increased for BDT. Our results show that forests' location, tree type, and management intensity can have nearly equal biophysical effects on temperature. A forest will have maximum biophysical cooling effect if it is in the south, composed of broadleaf PFT, and is managed to maximize leaf area index.