Browsing by Author "Ahmadian, Mansooreh"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Hybrid Modeling and Simulation of Stochastic Effects on Biochemical Regulatory NetworksAhmadian, Mansooreh (Virginia Tech, 2020-08-04)A complex network of genes and proteins governs the robust progression through cell cycles in the presence of inevitable noise. Stochastic modeling is viewed as a key paradigm to study the effects of intrinsic and extrinsic noise on the dynamics of biochemical networks. A detailed quantitative description of such complex and multiscale networks via stochastic modeling poses several challenges. First, stochastic models generally require extensive computations, particularly when applied to large networks. Second, the accuracy of stochastic models is highly dependent on the quality of the parameter estimation based on experimental observations. The goal of this dissertation is to address these problems by developing new efficient methods for modeling and simulation of stochastic effects in biochemical systems. Particularly, a hybrid stochastic model is developed to represent a detailed molecular mechanism of cell cycle control in budding yeast cells. In a single multiscale model, the proposed hybrid approach combines the advantages of two regimes: 1) the computational efficiency of a deterministic approach, and 2) the accuracy of stochastic simulations. The results show that this hybrid stochastic model achieves high computational efficiency while generating simulation results that match very well with published experimental measurements. Furthermore, a new hierarchical deep classification (HDC) algorithm is developed to address the parameter estimation problem in a monomolecular system. The HDC algorithm adopts a neural network that, via multiple hierarchical search steps, finds reasonably accurate ranges for the model parameters. To train the neural network in the presence of experimental data scarcity, the proposed method leverages the domain knowledge from stochastic simulations to generate labeled training data. The results show that the proposed HDC algorithm yields accurate ranges for the model parameters and highlight the potentials of model-free learning for parameter estimation in stochastic modeling of complex biochemical networks.
- A hybrid stochastic model of the budding yeast cell cycleAhmadian, Mansooreh; Tyson, John J.; Peccoud, Jean; Cao, Yang (2020-03-27)The growth and division of eukaryotic cells are regulated by complex, multi-scale networks. In this process, the mechanism of controlling cell-cycle progression has to be robust against inherent noise in the system. In this paper, a hybrid stochastic model is developed to study the effects of noise on the control mechanism of the budding yeast cell cycle. The modeling approach leverages, in a single multi-scale model, the advantages of two regimes: (1) the computational efficiency of a deterministic approach, and (2) the accuracy of stochastic simulations. Our results show that this hybrid stochastic model achieves high computational efficiency while generating simulation results that match very well with published experimental measurements.
- A stochastic model of size control in the budding yeast cell cycleAhmadian, Mansooreh; Tyson, John J.; Cao, Yang (2019-06-20)Background Cell size is a key characteristic that significantly affects many aspects of cellular physiology. There are specific control mechanisms during cell cycle that maintain the cell size within a range from generation to generation. Such control mechanisms introduce substantial variabilities to important properties of the cell cycle such as growth and division. To quantitatively study the effect of such variability in progression through cell cycle, detailed stochastic models are required. Results In this paper, a new hybrid stochastic model is proposed to study the effect of molecular noise and size control mechanism on the variabilities in cell cycle of the budding yeast Saccharomyces cerevisiae. The proposed model provides an accurate, yet computationally efficient approach for simulation of an intricate system by integrating the deterministic and stochastic simulation schemes. The developed hybrid stochastic model can successfully capture several key features of the cell cycle observed in experimental data. In particular, the proposed model: 1) confirms that the majority of noise in size control stems from low copy numbers of transcripts in the G1 phase, 2) identifies the size and time regulation modules in the size control mechanism, and 3) conforms with phenotypes of early G1 mutants in exquisite detail. Conclusions Hybrid stochastic modeling approach can be used to provide quantitative descriptions for stochastic properties of the cell cycle within a computationally efficient framework.