Browsing by Author "Alahakoon, Sanath"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A Comparative Performance Analysis of ANN Algorithms for MPPT Energy Harvesting in Solar PV SystemRoy, Rajib Baran; Rokonuzzaman, Md; Amin, Nowshad; Mishu, Mahmuda Khatun; Alahakoon, Sanath; Rahman, Saifur; Mithulananthan, Nadarajah; Rahman, Kazi Sajedur; Shakeri, Mohammad; Pasupuleti, Jagadeesh (IEEE, 2021-07-13)In this paper, artificial neural network (ANN) based Levenberg-Marquardt (LM), Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) algorithms are deployed in maximum power point tracking (MPPT) energy harvesting in solar photovoltaic (PV) system to forge a comparative performance analysis of the three different algorithms. A comparative analysis among the algorithms in terms of the performance of handling the trained dataset is presented. The MATLAB/Simulink environment is used to design the maximum power point tracking energy harvesting system and the artificial neural network toolbox is utilized to analyze the developed model. The proposed model is trained with 1000 dataset of solar irradiance, temperature, and voltages. Seventy percent data is used for training, while 15% data is employed for validation, and 15% data is utilized for testing. The trained datasets error histogram represents zero error in the training, validation, and test phase of data matching. The best validation performance is attained at 1000 epochs with nearly zero mean squared error where the trained data set is converged to the best training results. According to the results, the regression and gradient are 1, 1, 0.99 and 0.000078, 0.0000015739 and 0.26139 for Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient algorithms, respectively. The momentum parameters are 0.0000001 and 50000 for Levenberg-Marquardt and Bayesian Regularization algorithms, respectively, while the Scaled Conjugate Gradient algorithm does not have any momentum parameter. The Scaled Conjugate Gradient algorithm exhibit better performance compared to Levenberg-Marquardt and Bayesian Regularization algorithms. However, considering the dataset training, the correlation between input-output and error, the Levenberg-Marquardt algorithm performs better.
- Optimizing dynamic electric ferry loads with intelligent power managementRoy, Rajib Baran; Alahakoon, Sanath; Arachchillag, Shantha Jayasinghe; Rahman, Saifur (Elsevier, 2023-12)In recent years, there has been an increasing shift towards using environmentally friendly renewable resources in marine vessels, replacing traditional diesel generators. However, one of the main challenges faced in renewable energy-driven marine vessels is dynamic load management. The feasibility of a renewable-powered electric marine vessel largely depends on the optimal utilization of renewable resources, and storage is an essential component of the marine electric vessel. This paper proposes a two-stage power management system (PMS) for an electric ferry powered by the fuel cell and battery energy storage systems (BESS). The primary objective of the proposed PMS is to ensure a balance between the generated power and the ferry load by minimizing the consumption of hydrogen (H2) fuel. The first stage of the PMS employs particle swarm optimization (PSO), bacterial foraging optimization (BFO), and a hybrid PSO-BFO algorithm to optimize the fuel cell and battery capacity. This is done so that the generated power can follow the load demand. The second stage of the PMS utilizes the Mamdani rule-based fuzzy logic system (FLS) to match the load demand with the generated power. The hybrid PSO-BFO algorithm optimizes the fuzzy control parameters to meet the dynamic load by ensuring optimal H2 fuel consumption and battery state of charge (SOC). To obtain optimal values, the load profile of a conventional ferry is used for the proposed PMS. Based on the optimization results, the optimal capacities are found to be 318 kWh and 317.64 kWh for the fuel cell and BESS, respectively, which are obtained using the hybrid PSO-BFO algorithm. The optimal value of H2 fuel consumption during cruising is found to be 18 kg. A simulated model-based approach validates the operation of the proposed PMS. The proposed PMS ensures optimal H2 fuel consumption and battery SOC while meeting the dynamic load demands of the ferry. The results obtained demonstrate the effectiveness of the proposed PMS in optimizing the renewable energy-driven marine vessel power system.