Browsing by Author "Alazmi, Asmaa"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Assessing and Validating the Ability of Machine Learning to Handle Unrefined Particle Air Pollution Mobile Monitoring Data Randomly, Spatially, and SpatiotemporallyAlazmi, Asmaa; Rakha, Hesham A. (MDPI, 2022-08-16)Many epidemiological studies have evaluated the accuracy of machine learning models in predicting levels of particulate number (PN) and black carbon (BC) pollutant concentrations. However, few studies have investigated the ability of machine learning to predict the pollutant concentration with using unrefined mobile measurement data and explore the reliability of the prediction models. Additionally, researchers are moving away from using fixed-site data in favor of using mobile monitoring data in a variety of locations to develop hourly empirical models of particulate air pollution. This study compared the differences between long-term (daily average) and short-term (hourly average and 1 s unrefined data) model performance in three different classes of cross validation: randomly, spatially, and spatially temporally. This study used secondary data describing BC and PN pollutant levels in the rural location of Blacksburg (VA). Our results show that the model based on unrefined data was able to detect the pollutant hot spot areas with similar accuracy compared to the aggregated model. Moreover, the performance was found to improve when temporal data added to the model: the 10-fold MAE for the BC and PN were 0.44 μg/m3 and 3391 pt/cm3, respectively, for the unrefined data (one second data) model. The findings detailed here will add to the literature on the correlation between data (pre)processing and the efficacy of machine learning models in predicting pollution levels while also enhancing our understanding of more reliable validation strategies.
- Assessment of Machine Learning Algorithms for Predicting Air Entrainment Rates in a Confined Plunging Liquid Jet ReactorAlazmi, Asmaa; Al-Anzi, Bader S. (MDPI, 2023-09-15)A confined plunging liquid jet reactor (CPLJR) is an unconventional efficient and feasible aerator, mixer and brine dispenser that operates under many operating conditions. Such operating conditions could be challenging, and hence, utilizing prediction models built on machine learning (ML) approaches could be very helpful in giving reliable tools to manage highly non-linear problems related to experimental hydrodynamics such as CPLJRs. CPLJRs are vital in protecting the environment through preserving and sustaining the quality of water resources. In the current study, the effects of the main parameters on the air entrainment rate, Qa, were investigated experimentally in a confined plunging liquid jet reactor (CPLJR). Various downcomer diameters (Dc), jet lengths (Lj), liquid volumetric flow rates (Qj), nozzle diameters (dn), and jet velocities (Vj) were used to measure the air entrainment rate, Qa. The non-linear relationship between the air entrainment ratio and confined plunging jet reactor parameters suggests that applying unconventional regression algorithms to predict the air entrainment ratio is appropriate. In addition to the experimental work, machine learning (ML) algorithms were applied to the confined plunging jet reactor parameters to determine the parameter that predicts Qa the best. The results obtained from ML showed that K-Nearest Neighbour (KNN) gave the best prediction abilities, the proportion of variance in the Qa that can be explained by the CPLJR parameter was 90%, the root mean square error (RMSE) = 0.069, and the mean absolute error (MAE) = 0.052. Sensitivity analysis was applied to determine the most effective predictor in predicting Qa. The Qj and Vj were the most influential among all the input variables. The sensitivity analysis shows that the lasso algorithm can create an effective air entrainment rate model with just two of the most crucial variables, Qj and Vj. The coefficient of determination (R2) was 82%. The present findings support using machine learning algorithms to accurately forecast the CPLJR system’s experimental results.