Browsing by Author "Alexandre, David"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- The Influence of Obliquely Propagating Monsoon Gravity Waves on the Polar Summer MesosphereAlexandre, David (Virginia Tech, 2021-07-01)The deep convection from monsoons is known to be a major source of gravity waves in the Earth's summer troposphere. While propagating through the middle atmosphere, these waves can carry their momentum up to the mesosphere, following either a vertical or an oblique path. This upward and oblique propagation of gravity waves refers to the latitudinal propagation, away from their low-latitude tropospheric source and towards the polar summer mesosphere. Their dissipation in this atmospheric region plays an important role in the global dynamical structure of the middle atmosphere and yet, the oblique propagation of gravity waves is not included in the present global models. Understanding the influence of the obliquely propagating monsoon gravity waves on the polar summer mesosphere, as well as the hemispheric and seasonal variations of this phenomenon, can improve the gravity-wave parameterization schemes used in the global models. My dissertation relies upon the atmosphere theory and the gravity-wave observations, first, to perform an observational analysis of the oblique propagation of gravity waves in the summer hemisphere. In response to temperature anomalies in the winter northern stratosphere, the distribution of the gravity-wave pseudomomentum flux in the opposite summer mesosphere appeared to be altered. This in turn changes the gravity-wave oblique propagation and its influence on the temperature variations seen in the polar mesospheric clouds. After the development of a 4-D non-hydrostatic ray-tracing model for the simulation of the gravity-wave propagation, my dissertation explores the hemispheric and seasonal differences in the propagation and dissipation of more than 40,000 gravity waves from the low-latitude troposphere. These ray-tracing simulations show the southern hemisphere to be more conducive to both the vertical and the oblique propagation of tropospheric to mesospheric gravity waves. This analysis also highlighted a strong wave filtering at the northern tropopause where a significant number of gravity waves were vertically reflected before reaching the stratosphere.