Browsing by Author "Alkulaib, Lulwah"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- From Guest to Family: An Innovative Framework for Enhancing Memorable Experiences in the Hotel IndustryAlhamadani, Abdulaziz; Althubiti, Khadija; Sarkar, Shailik; He, Jianfeng; Alkulaib, Lulwah; Behal, Srishti; Khan, Mahmood; Lu, Chang-Tien (ACM, 2023-11-06)This paper presents an innovative framework developed to identify, analyze, and generate memorable experiences in the hotel industry. People prefer memorable experiences over traditional services or products in today’s ever-changing consumer world. As a result, the hospitality industry has shifted its focus toward creating unique and unforgettable experiences rather than just providing essential services. Despite the inherent subjectivity and difficulties in quantifying experiences, the quest to capture and understand these critical elements in the hospitality context has persisted. However, traditional methods have proven inadequate due to their reliance on objective surveys or limited social media data, resulting in a lack of diversity and potential bias. Our framework addresses these issues, offering a holistic solution that effectively identifies and extracts memorable experiences from online customer reviews, discerns trends on a monthly or yearly basis, and utilizes a local LLM to generate potential, unexplored experiences. As the first successfully deployed, fast, and accurate product of its kind in the industry, This framework significantly contributes to the hotel industry’s efforts to enhance services and create compelling, personalized experiences for its customers.
- Hypergraph Text Classification for Mental Health Misleading AdviceAlkulaib, Lulwah; Alhamadani, Abdulaziz; Sarkar, Shailik; Lu, Chang-Tien (ACM, 2023-11-06)This paper introduces HyperMAD, a novel Hypergraph Convolutional Network model designed for the multiclass classification of mental health advice in Arabic tweets. The model distinguishes between misleading and valid advice, further categorizing each tweet into specific classes of advice. HyperMAD leverages high-order relations between words in short texts, captured through the definition of four types of hyperedges that represent local and global contexts as well as semantic similarity. Extensive experiments demonstrate the effectiveness of HyperMAD, with results outperforming those from existing baselines. The study also includes an ablation study to investigate the significance and contribution of each hyperedge type. The paper presents a case study analyzing the accuracy and types of Arabic mental health advice on Twitter, revealing that about 9% of the advice in response to mental health expressions on Twitter was accurate in general. The paper concludes with the hope that the application of HyperMAD can be utilized in flagging misleading responses on social media, providing the correct resources for those who choose to share their mental health struggles online.