Browsing by Author "Altarawy, Doaa"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screenMenden, Michael P.; Wang, Dennis; Mason, Mike J.; Szalai, Bence; Bulusu, Krishna C.; Guan, Yuanfang; Yu, Thomas; Kang, Jaewoo; Jeon, Minji; Wolfinger, Russ; Nguyen, Tin; Zaslavskiy, Mikhail; Jang, In Sock; Ghazoui, Zara; Ahsen, Mehmet Eren; Vogel, Robert; Neto, Elias Chaibub; Norman, Thea; Tang, Eric K. Y.; Garnett, Mathew J.; Di Veroli, Giovanni Y.; Fawell, Stephen; Stolovitzky, Gustavo; Guinney, Justin; Dry, Jonathan R.; Saez-Rodriguez, Julio; Abante, Jordi; Abecassis, Barbara Schmitz; Aben, Nanne; Aghamirzaie, Delasa; Aittokallio, Tero; Akhtari, Farida S.; Al-lazikani, Bissan; Alam, Tanvir; Allam, Amin; Allen, Chad; de Almeida, Mariana Pelicano; Altarawy, Doaa; Alves, Vinicius; Amadoz, Alicia; Anchang, Benedict; Antolin, Albert A.; Ash, Jeremy R.; Romeo Aznar, Victoria; Ba-alawi, Wail; Bagheri, Moeen; Bajic, Vladimir; Ball, Gordon; Ballester, Pedro J.; Baptista, Delora; Bare, Christopher; Bateson, Mathilde; Bender, Andreas; Bertrand, Denis; Wijayawardena, Bhagya; Boroevich, Keith A.; Bosdriesz, Evert; Bougouffa, Salim; Bounova, Gergana; Brouwer, Thomas; Bryant, Barbara; Calaza, Manuel; Calderone, Alberto; Calza, Stefano; Capuzzi, Stephen; Carbonell-Caballero, Jose; Carlin, Daniel; Carter, Hannah; Castagnoli, Luisa; Celebi, Remzi; Cesareni, Gianni; Chang, Hyeokyoon; Chen, Guocai; Chen, Haoran; Chen, Huiyuan; Cheng, Lijun; Chernomoretz, Ariel; Chicco, Davide; Cho, Kwang-Hyun; Cho, Sunghwan; Choi, Daeseon; Choi, Jaejoon; Choi, Kwanghun; Choi, Minsoo; De Cock, Martine; Coker, Elizabeth; Cortes-Ciriano, Isidro; Cserzo, Miklos; Cubuk, Cankut; Curtis, Christina; Van Daele, Dries; Dang, Cuong C.; Dijkstra, Tjeerd; Dopazo, Joaquin; Draghici, Sorin; Drosou, Anastasios; Dumontier, Michel; Ehrhart, Friederike; Eid, Fatma-Elzahraa; ElHefnawi, Mahmoud; Elmarakeby, Haitham A.; van Engelen, Bo; Engin, Hatice Billur; de Esch, Iwan; Evelo, Chris; Falcao, Andre O.; Farag, Sherif; Fernandez-Lozano, Carlos; Fisch, Kathleen; Flobak, Asmund; Fornari, Chiara; Foroushani, Amir B. K.; Fotso, Donatien Chedom; Fourches, Denis; Friend, Stephen; Frigessi, Arnoldo; Gao, Feng; Gao, Xiaoting; Gerold, Jeffrey M.; Gestraud, Pierre; Ghosh, Samik; Gillberg, Jussi; Godoy-Lorite, Antonia; Godynyuk, Lizzy; Godzik, Adam; Goldenberg, Anna; Gomez-Cabrero, David; Gonen, Mehmet; de Graaf, Chris; Gray, Harry; Grechkin, Maxim; Guimera, Roger; Guney, Emre; Haibe-Kains, Benjamin; Han, Younghyun; Hase, Takeshi; He, Di; He, Liye; Heath, Lenwood S.; Hellton, Kristoffer H.; Helmer-Citterich, Manuela; Hidalgo, Marta R.; Hidru, Daniel; Hill, Steven M.; Hochreiter, Sepp; Hong, Seungpyo; Hovig, Eivind; Hsueh, Ya-Chih; Hu, Zhiyuan; Huang, Justin K.; Huang, R. Stephanie; Hunyady, Laszlo; Hwang, Jinseub; Hwang, Tae Hyun; Hwang, Woochang; Hwang, Yongdeuk; Isayev, Olexandr; Walk, Oliver Bear Don't; Jack, John; Jahandideh, Samad; Ji, Jiadong; Jo, Yousang; Kamola, Piotr J.; Kanev, Georgi K.; Karacosta, Loukia; Karimi, Mostafa; Kaski, Samuel; Kazanov, Marat; Khamis, Abdullah M.; Khan, Suleiman Ali; Kiani, Narsis A.; Kim, Allen; Kim, Jinhan; Kim, Juntae; Kim, Kiseong; Kim, Kyung; Kim, Sunkyu; Kim, Yongsoo; Kim, Yunseong; Kirk, Paul D. W.; Kitano, Hiroaki; Klambauer, Gunter; Knowles, David; Ko, Melissa; Kohn-Luque, Alvaro; Kooistra, Albert J.; Kuenemann, Melaine A.; Kuiper, Martin; Kurz, Christoph; Kwon, Mijin; van Laarhoven, Twan; Laegreid, Astrid; Lederer, Simone; Lee, Heewon; Lee, Jeon; Lee, Yun Woo; Leppaho, Eemeli; Lewis, Richard; Li, Jing; Li, Lang; Liley, James; Lim, Weng Khong; Lin, Chieh; Liu, Yiyi; Lopez, Yosvany; Low, Joshua; Lysenko, Artem; Machado, Daniel; Madhukar, Neel; De Maeyer, Dries; Malpartida, Ana Belen; Mamitsuka, Hiroshi; Marabita, Francesco; Marchal, Kathleen; Marttinen, Pekka; Mason, Daniel; Mazaheri, Alireza; Mehmood, Arfa; Mehreen, Ali; Michaut, Magali; Miller, Ryan A.; Mitsopoulos, Costas; Modos, Dezso; Van Moerbeke, Marijke; Moo, Keagan; Motsinger-Reif, Alison; Movva, Rajiv; Muraru, Sebastian; Muratov, Eugene; Mushthofa, Mushthofa; Nagarajan, Niranjan; Nakken, Sigve; Nath, Aritro; Neuvial, Pierre; Newton, Richard; Ning, Zheng; De Niz, Carlos; Oliva, Baldo; Olsen, Catharina; Palmeri, Antonio; Panesar, Bhawan; Papadopoulos, Stavros; Park, Jaesub; Park, Seonyeong; Park, Sungjoon; Pawitan, Yudi; Peluso, Daniele; Pendyala, Sriram; Peng, Jian; Perfetto, Livia; Pirro, Stefano; Plevritis, Sylvia; Politi, Regina; Poon, Hoifung; Porta, Eduard; Prellner, Isak; Preuer, Kristina; Angel Pujana, Miguel; Ramnarine, Ricardo; Reid, John E.; Reyal, Fabien; Richardson, Sylvia; Ricketts, Camir; Rieswijk, Linda; Rocha, Miguel; Rodriguez-Gonzalvez, Carmen; Roell, Kyle; Rotroff, Daniel; de Ruiter, Julian R.; Rukawa, Ploy; Sadacca, Benjamin; Safikhani, Zhaleh; Safitri, Fita; Sales-Pardo, Marta; Sauer, Sebastian; Schlichting, Moritz; Seoane, Jose A.; Serra, Jordi; Shang, Ming-Mei; Sharma, Alok; Sharma, Hari; Shen, Yang; Shiga, Motoki; Shin, Moonshik; Shkedy, Ziv; Shopsowitz, Kevin; Sinai, Sam; Skola, Dylan; Smirnov, Petr; Soerensen, Izel Fourie; Soerensen, Peter; Song, Je-Hoon; Song, Sang Ok; Soufan, Othman; Spitzmueller, Andreas; Steipe, Boris; Suphavilai, Chayaporn; Tamayo, Sergio Pulido; Tamborero, David; Tang, Jing; Tanoli, Zia-ur-Rehman; Tarres-Deulofeu, Marc; Tegner, Jesper; Thommesen, Liv; Tonekaboni, Seyed Ali Madani; Tran, Hong T.; De Troyer, Ewoud; Truong, Amy; Tsunoda, Tatsuhiko; Turu, Gabor; Tzeng, Guang-Yo; Verbeke, Lieven; Videla, Santiago; Vis, Daniel; Voronkov, Andrey; Votis, Konstantinos; Wang, Ashley; Wang, Hong-Qiang Horace; Wang, Po-Wei; Wang, Sheng; Wang, Wei; Wang, Xiaochen; Wang, Xin; Wennerberg, Krister; Wernisch, Lorenz; Wessels, Lodewyk; van Westen, Gerard J. P.; Westerman, Bart A.; White, Simon Richard; Willighagen, Egon; Wurdinger, Tom; Xie, Lei; Xie, Shuilian; Xu, Hua; Yadav, Bhagwan; Yau, Christopher; Yeerna, Huwate; Yin, Jia Wei; Yu, Michael; Yu, MinHwan; Yun, So Jeong; Zakharov, Alexey; Zamichos, Alexandros; Zanin, Massimiliano; Zeng, Li; Zenil, Hector; Zhang, Frederick; Zhang, Pengyue; Zhang, Wei; Zhao, Hongyu; Zhao, Lan; Zheng, Wenjin; Zoufir, Azedine; Zucknick, Manuela (Springer Nature, 2019-06-17)The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
- Developmental gene regulatory network connections predicted by machine learning from gene expression data aloneZhang, Jingyi; Ibrahim, Farhan; Najmulski, Emily; Katholos, George; Altarawy, Doaa; Heath, Lenwood S.; Tulin, Sarah L. (PLOS, 2021-12-28)Gene regulatory network (GRN) inference can now take advantage of powerful machine learning algorithms to complement traditional experimental methods in building gene networks. However, the dynamical nature of embryonic development-representing the timedependent interactions between thousands of transcription factors, signaling molecules, and effector genes-is one of the most challenging arenas for GRN prediction. In this work, we show that successful GRN predictions for a developmental network from gene expression data alone can be obtained with the Priors Enriched Absent Knowledge (PEAK) network inference algorithm. PEAK is a noise-robust method that models gene expression dynamics via ordinary differential equations and selects the best network based on information-theoretic criteria coupled with the machine learning algorithm Elastic Net. We test our GRN prediction methodology using two gene expression datasets for the purple sea urchin, Stronglyocentrotus purpuratus, and cross-check our results against existing GRN models that have been constructed and validated by over 30 years of experimental results. Our results find a remarkably high degree of sensitivity in identifying known gene interactions in the network (maximum 81.58%). We also generate novel predictions for interactions that have not yet been described, which provide a resource for researchers to use to further complete the sea urchin GRN. Published ChIPseq data and spatial co-expression analysis further support a subset of the top novel predictions. We conclude that GRN predictions that match known gene interactions can be produced using gene expression data alone from developmental time series experiments.
- PlantSimLab - a modeling and simulation web tool for plant biologistsHa, Sook; Dimitrova, Elena; Hoops, Stefan; Altarawy, Doaa; Ansariola, Mitra; Deb, Devdutta; Glazebrook, Jane; Hillmer, Rachel; Shahin, Hossameldin L.; Katagiri, Fumiaki; McDowell, John M.; Megraw, Molly; Setubal, João C.; Tyler, Brett M.; Laubenbacher, Reinhard C. (2019-10-21)Background At the molecular level, nonlinear networks of heterogeneous molecules control many biological processes, so that systems biology provides a valuable approach in this field, building on the integration of experimental biology with mathematical modeling. One of the biggest challenges to making this integration a reality is that many life scientists do not possess the mathematical expertise needed to build and manipulate mathematical models well enough to use them as tools for hypothesis generation. Available modeling software packages often assume some modeling expertise. There is a need for software tools that are easy to use and intuitive for experimentalists. Results This paper introduces PlantSimLab, a web-based application developed to allow plant biologists to construct dynamic mathematical models of molecular networks, interrogate them in a manner similar to what is done in the laboratory, and use them as a tool for biological hypothesis generation. It is designed to be used by experimentalists, without direct assistance from mathematical modelers. Conclusions Mathematical modeling techniques are a useful tool for analyzing complex biological systems, and there is a need for accessible, efficient analysis tools within the biological community. PlantSimLab enables users to build, validate, and use intuitive qualitative dynamic computer models, with a graphical user interface that does not require mathematical modeling expertise. It makes analysis of complex models accessible to a larger community, as it is platform-independent and does not require extensive mathematical expertise.