Browsing by Author "Angeles, Luisa F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Evaluation of Metagenomic-Enabled Antibiotic Resistance Surveillance at a Conventional Wastewater Treatment PlantMajeed, Haniyyah J.; Riquelme, Maria V.; Davis, Benjamin C.; Gupta, Suraj; Angeles, Luisa F.; Aga, Diana S.; Garner, Emily; Pruden, Amy; Vikesland, Peter J. (Frontiers, 2021-05-13)Wastewater treatment plants (WWTPs) receive a confluence of sewage containing antimicrobials, antibiotic resistant bacteria, antibiotic resistance genes (ARGs), and pathogens and thus are a key point of interest for antibiotic resistance surveillance. WWTP monitoring has the potential to inform with respect to the antibiotic resistance status of the community served as well as the potential for ARGs to escape treatment. However, there is lack of agreement regarding suitable sampling frequencies and monitoring targets to facilitate comparison within and among individual WWTPs. The objective of this study was to comprehensively evaluate patterns in metagenomic-derived indicators of antibiotic resistance through various stages of treatment at a conventional WWTP for the purpose of informing local monitoring approaches that are also informative for global comparison. Relative abundance of total ARGs decreased by ∼50% from the influent to the effluent, with each sampling location defined by a unique resistome (i.e., total ARG) composition. However, 90% of the ARGs found in the effluent were also detected in the influent, while the effluent ARG-pathogen taxonomic linkage patterns identified in assembled metagenomes were more similar to patterns in regional clinical surveillance data than the patterns identified in the influent. Analysis of core and discriminatory resistomes and general ARG trends across the eight sampling events (i.e., tendency to be removed, increase, decrease, or be found in the effluent only), along with quantification of ARGs of clinical concern, aided in identifying candidate ARGs for surveillance. Relative resistome risk characterization further provided a comprehensive metric for predicting the relative mobility of ARGs and likelihood of being carried in pathogens and can help to prioritize where to focus future monitoring and mitigation. Most antibiotics that were subject to regional resistance testing were also found in the WWTP, with the total antibiotic load decreasing by ∼40–50%, but no strong correlations were found between antibiotics and corresponding ARGs. Overall, this study provides insight into how metagenomic data can be collected and analyzed for surveillance of antibiotic resistance at WWTPs, suggesting that effluent is a beneficial monitoring point with relevance both to the local clinical condition and for assessing efficacy of wastewater treatment in reducing risk of disseminating antibiotic resistance.
- Towards a harmonized method for the global reconnaissance of multi-class antimicrobials and other pharmaceuticals in wastewater and receiving surface watersSingh, Randolph R.; Angeles, Luisa F.; Butryn, Deena M.; Metch, Jacob W.; Garner, Emily; Vikesland, Peter J.; Aga, Diana S. (Elsevier, 2019-01-17)Antimicrobial resistance is a worldwide problem that is both pressing and challenging due to the rate at which it is spreading, and the lack of understanding of the mechanisms that link human, animal and environmental sources contributing to its proliferation. One knowledge gap that requires immediate attention is the significance of antimicrobial residues and other pharmaceuticals that are being discharged from wastewater treatment plants (WWTPs) on the dissemination of antimicrobial resistance in the environment. In this work we provide an approach to develop a harmonized analytical method for 8 classes of antimicrobials and other pharmaceuticals that can be used for global monitoring in wastewater and receiving waters. Analysis of these trace organic chemicals in the influent and effluent wastewater, and in the respective upstream and downstream receiving waters from different countries across the globe is not trivial. Here, we demonstrated that sample preparation using solid-phase extraction (SPE) not only provides a convenient and cost-effective shipping of samples, but also adds stability to the analytes during international shipping. It is important that SPE cartridges are maintained at cold temperature during shipment if the duration is longer than 7 days because a significant decrease in recoveries were observed after 7 days in the cartridges stored at room temperature, especially for sulfonamides and tetracyclines. To compensate for sample degradation during shipment, and matrix effects in liquid chromatography/mass spectrometry, the use of stable isotope labeled compounds should be employed when available and affordable. The importance of applying a defined tolerance for the ion ratios (Q/q) that have been optimized for wastewater and surface water is discussed. The tolerance range was set to be the mean Q/q of the analyte standard at various concentrations ±40% for the influent, and ±30% for the effluent, upstream, and downstream samples; for tetracyclines and quinolones, however, the tolerance range was ±80% in order to minimize false negative and false positive detection. The optimized procedures were employed to reveal differences in antimicrobial and pharmaceutical concentrations in influent, effluent, and surface water samples from Hong Kong, India, Philippines, Sweden, Switzerland, and United States. The antimicrobials with the highest concentrations in influent and effluent samples were ciprofloxacin (48,103 ng/L, Hong Kong WWTP 1) and clarithromycin (5178 ng/L, India WWTP 2), respectively. On the other hand, diclofenac (108,000 ng/L, Sweden WWTP 2), caffeine (67,000 ng/L, India WWTP 1), and acetaminophen (28,000 ng/L, India WWTP 1) were the highest detected pharmaceuticals in the receiving surface water samples. Hong Kong showed the highest total antimicrobial concentrations that included macrolides, quinolones, and sulfonamides with concentrations reaching 60,000 ng/L levels in the influent. Antidepressants were predominant in Sweden, Switzerland, and the United States. © 2019