Browsing by Author "Ashkenazi, A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Demonstration of neutron identification in neutrino interactions in the MicroBooNE liquid argon time projection chamberAbratenko, P.; Alterkait, O.; Aldana, D. A.; Arellano, L.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnard, A.; Barr, G.; Barrow, D.; Barrow, J.; Basque, V.; Bateman, J.; Rodrigues, O. B.; Berkman, S.; Bhanderi, A.; Bhat, A.; Bhattacharya, M.; Bishai, M.; Blake, A.; Bogart, B.; Bolton, T.; Book, J. Y.; Brunetti, M. B.; Camilleri, L.; Cao, Y.; Caratelli, D.; Cavanna, F.; Cerati, G.; Chappell, A.; Chen, Y.; Conrad, J. M.; Convery, M.; Cooper-Troendle, L.; Crespo-Anadón, J. I.; Cross, R.; Del Tutto, M.; Dennis, S. R.; Detje, P.; Diurba, R.; Djurcic, Z.; Dorrill, R.; Duffy, K.; Dytman, S.; Eberly, B.; Englezos, P.; Ereditato, A.; Evans, J. J.; Fine, R.; Foreman, W.; Fleming, B. T.; Franco, D.; Furmanski, A. P.; Gao, F.; Garcia-Gamez, D.; Gardiner, S.; Ge, G.; Gollapinni, S.; Gramellini, E.; Green, P.; Greenlee, H.; Gu, L.; Gu, W.; Guenette, R.; Guzowski, P.; Hagaman, L.; Handley, M. D.; Hen, O.; Hilgenberg, C.; Horton-Smith, G. A.; Imani, Z.; Irwin, B.; Ismail, M. S.; James, C.; Ji, X.; Jo, J. H.; Johnson, R. A.; Jwa, Y.-J.; Kalra, D.; Kamp, N.; Karagiorgi, G.; Ketchum, W.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Lane, N.; Li, J.-Y.; Li, Y.; Lin, K.; Littlejohn, B. R.; Liu, H.; Louis, W. C.; Luo, X.; Mariani, Camillo; Marsden, D.; Marshall, J.; Martinez, N.; Caicedo, D. A. M.; Martynenko, S.; Mastbaum, A.; Mawby, I.; McConkey, N.; Meddage, V.; Mendez, J.; Micallef, J.; Miller, K.; Mogan, A.; Mohayai, T.; Mooney, M.; Moor, A. F.; Moore, C. D.; Lepin, L. M.; Moudgalya, M. M.; Mulleriababu, S.; Naples, D.; Navrer-Agasson, A.; Nayak, N.; Nebot-Guinot, M.; Nguyen, C.; Nowak, J.; Oza, N.; Palamara, O.; Pallat, N.; Paolone, V.; Papadopoulou, A.; Papavassiliou, V.; Parkinson, H. B.; Pate, S. F.; Patel, N.; Pavlovic, Z.; Piasetzky, E.; Pletcher, K.; Pophale, I.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Reggiani-Guzzo, M.; Ren, L.; Rochester, L.; Rondon, J. R.; Rosenberg, M.; Ross-Lonergan, M.; Safa, I.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sharankova, R.; Shi, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Spitz, J.; Stancari, M.; John, J. S.; Strauss, T.; Szelc, A. M.; Tang, W.; Taniuchi, N.; Terao, K.; Thorpe, C.; Torbunov, D.; Totani, D.; Toups, M.; Trettin, A.; Tsai, Y.-T.; Tyler, J.; Uchida, M. A.; Usher, T.; Viren, B.; Wang, J.; Weber, M.; Wei, H.; White, A. J.; Wolbers, S.; Wongjirad, T.; Wospakrik, M.; Wresilo, K.; Wu, W.; Yandel, E.; Yang, T.; Yates, L. E.; Yu, H. W.; Zeller, G. P.; Zennamo, J.; Zhang, C. (2024-10-14)A significant challenge in measurements of neutrino oscillations is reconstructing the incoming neutrino energies. While modern fully-active tracking calorimeters such as liquid argon time projection chambers in principle allow the measurement of all final state particles above some detection threshold, undetected neutrons remain a considerable source of missing energy with little to no data constraining their production rates and kinematics. We present the first demonstration of tagging neutrino-induced neutrons in liquid argon time projection chambers using secondary protons emitted from neutron-argon interactions in the MicroBooNE detector. We describe the method developed to identify neutrino-induced neutrons and demonstrate its performance using neutrons produced in muon-neutrino charged current interactions. The method is validated using a small subset of MicroBooNE’s total dataset. The selection yields a sample with 60 % of selected tracks corresponding to neutron-induced secondary protons. At this purity, the integrated efficiency is 8.4% for neutrons that produce a detectable proton.
- Design and construction of the MicroBooNE Cosmic Ray Tagger systemAdams, C.; Collaboration, Microboone; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Auger, M.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bhat, A.; Bhattacharya, K.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, Leslie; Caratelli, D.; Terrazas, I. Caro; Carr, Rachel E.; Castillo Fernandez, R.; Cavanna, F.; Cerati, G.; Chen, Y.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, Janet M.; Convery, M.; Cooper-Troendle, L.; Crespo-Anadon, J. I.; Del Tutto, M.; Devitt, D.; Diaz, A.; Duffy, K.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Evans, J. J.; Fadeeva, A. A.; Fitzpatrick, R. S.; Fleming, B. T.; Franco, D.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinniz, S.; Goodwin, O.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Guzowski, P.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Horton-Smith, Glenn A.; Hourlier, A.; Huang, E-C; James, C.; Jan de Vries, J.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Jwa, Y-J; Karagiorgi, Georgia S.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Marcocci, S.; Mariani, Camillo; Marshall, J.; Martin-Albo, J.; Martinez Caicedo, D. A.; Mastbaum, A.; Meddage, V.; Mettler, T.; Mills, G. B.; Mistry, K.; Mogan, A.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murphy, M.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Pandey, V.; Paolone, V.; Papadopoulou, A.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Ross-Lonergan, M.; von Rohr, C. Rudolph; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, Marjorie Hansen; Sharankova, R.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, Joshua; St John, J.; Strauss, T.; Sutton, K.; Sword-Fehlberg, S.; Szelc, A. M.; Tagg, N.; Tang, W.; Terao, K.; Thomson, M.; Thornton, R. T.; Toups, M.; Tsai, Y. T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wei, H.; Wickremasinghe, D. A.; Wierman, K.; Williams, Z.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yarbrough, G.; Yates, L. E.; Zeller, Geralyn P.; Zennameh, J.; Zhang, C. (2019-04)The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking.
- DUNE Phase II: scientific opportunities, detector concepts, technological solutionsAbed Abud, A.; Abi, B.; Acciarri, R.; Acero, M. A.; Adames, M. R.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Adriano, C.; Aduszkiewicz, A.; Aguilar, J.; Akbar, F.; Allison, K.; Alonso Monsalve, S.; Alrashed, M.; Alton, A.; Alvarez, R.; Alves, T.; Amar, H.; Amedo, P.; Anderson, J.; Andreopoulos, C.; Andreotti, M.; Andrews, M. P.; Andrianala, F.; Andringa, S.; Anfimov, N.; Ankowski, A.; Antic, D.; Antoniassi, M.; Antonova, M.; Antoshkin, A.; Aranda-Fernandez, A.; Arellano, L.; Arrieta Diaz, E.; Arroyave, M. A.; Asaadi, J.; Ashkenazi, A.; Asner, D. M.; Asquith, L.; Atkin, E.; Auguste, D.; Aurisano, A.; Aushev, V.; Autiero, D.; Azam, M. B.; Azfar, F.; Back, A.; Back, H.; Back, J. J.; Bagaturia, I.; Bagby, L.; Balashov, N.; Balasubramanian, S.; Baldi, P.; Baldini, W.; Baldonedo, J.; Baller, B.; Bambah, B.; Banerjee, R.; Barao, F.; Barbu, D.; Barenboim, G.; Barham Alzás, P.; Barker, G. J.; Barkhouse, W.; Barr, G.; Barranco Monarca, J.; Barros, A.; Barros, N.; Barrow, D.; Barrow, J. L.; Basharina-Freshville, A.; Bashyal, A.; Basque, V.; Batchelor, C.; Bathe-Peters, L.; Battat, J. B. R.; Battisti, F.; Bay, F.; Bazetto, M. C. Q.; Bazo Alba, J. L. L.; Beacom, J. F.; Bechetoille, E.; Behera, B.; Belchior, E.; Bell, G.; Bellantoni, L.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benekos, N.; Benitez Montiel, C.; Benjamin, D.; Bento Neves, F.; Berger, J.; Berkman, S.; Bernal, J.; Bernardini, P. (IOP Publishing, 2024-12-06)The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R & D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos.
- Novel approach for evaluating detector-related uncertainties in a LArTPC using MicroBooNE dataAbratenko, P.; An, R.; Anthony, J.; Arellano, L.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Basque, V.; Bathe-Peters, L.; Benevides Rodrigues, O.; Berkman, S.; Bhanderi, A.; Bhat, A.; Bishai, M.; Blake, A.; Bolton, T.; Book, J. Y.; Camilleri, L.; Caratelli, D.; Caro Terrazas, I.; Cavanna, F.; Cerati, G.; Chen, Y.; Cianci, D.; Conrad, J. M.; Convery, M.; Cooper-Troendle, L.; Crespo-Anadón, J. I.; Del Tutto, M.; Dennis, S. R.; Detje, P.; Devitt, A.; Diurba, R.; Dorrill, R.; Duffy, K.; Dytman, S.; Eberly, B.; Ereditato, A.; Evans, J. J.; Fine, R.; Fiorentini Aguirre, G. A.; Fitzpatrick, R. S.; Fleming, B. T.; Foppiani, N.; Franco, D.; Furmanski, A. P.; Garcia-Gamez, D.; Gardiner, S.; Ge, G.; Gollapinni, S.; Goodwin, O.; Gramellini, E.; Green, P.; Greenlee, H.; Gu, W.; Guenette, R.; Guzowski, P.; Hagaman, L.; Hen, O.; Hilgenberg, C.; Horton-Smith, G. A.; Hourlier, A.; Itay, R.; James, C.; Ji, X.; Jiang, L.; Jo, J. H.; Johnson, R. A.; Jwa, Y.-J.; Kalra, D.; Kamp, N.; Kaneshige, N.; Karagiorgi, G.; Ketchum, W.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Lepetic, I.; Li, K.; Li, Y.; Lin, K.; Littlejohn, B. R.; Louis, W. C.; Luo, X.; Manivannan, K.; Mariani, Camillo; Marsden, D.; Marshall, J.; Caicedo, D. A. M.; Mason, K.; Mastbaum, A.; McConkey, N.; Meddage, V.; Mettler, T.; Miller, K.; Mills, J.; Mistry, K.; Mogan, A.; Mohayai, T.; Moon, J.; Mooney, M.; Moor, A. F.; Moore, C. D.; Mora Lepin, L.; Mousseau, J.; Murphy, Matthew Douglas; Naples, D.; Navrer-Agasson, A.; Nebot-Guinot, M.; Neely, R. K.; Newmark, D. A.; Nowak, J.; Nunes, M.; Palamara, O.; Paolone, V.; Papadopoulou, A.; Papavassiliou, V.; Pate, S. F.; Patel, N.; Paudel, A.; Pavlovic, Z.; Piasetzky, E.; Ponce-Pinto, I. D.; Prince, S.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Reggiani-Guzzo, M.; Ren, L.; Rice, L. C. J.; Rochester, L.; Rodriguez Rondon, J.; Rosenberg, M.; Ross-Lonergan, M.; Scanavini, G.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sharankova, R.; Shi, J.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Spentzouris, P.; Spitz, J.; Stancari, M.; St. John, J.; Strauss, T.; Sutton, K.; Sword-Fehlberg, S.; Szelc, A. M.; Tang, W.; Terao, K.; Thorpe, C.; Totani, D.; Toups, M.; Tsai, Y.-T.; Uchida, M. A.; Usher, T.; Van De Pontseele, W.; Viren, B.; Weber, M.; Wei, H.; Williams, Z.; Wolbers, S.; Wongjirad, T.; Wospakrik, M.; Wresilo, K.; Wright, N.; Wu, W.; Yandel, E.; Yang, T.; Yarbrough, G.; Yates, L. E.; Yu, H. W.; Zeller, G. P.; Zennamo, J.; Zhang, C. (2022-05-17)Primary challenges for current and future precision neutrino experiments using liquid argon time projection chambers (LArTPCs) include understanding detector effects and quantifying the associated systematic uncertainties. This paper presents a novel technique for assessing and propagating LArTPC detector-related systematic uncertainties. The technique makes modifications to simulation waveforms based on a parameterization of observed differences in ionization signals from the TPC between data and simulation, while remaining insensitive to the details of the detector model. The modifications are then used to quantify the systematic differences in low- and high-level reconstructed quantities. This approach could be applied to future LArTPC detectors, such as those used in SBN and DUNE.