Browsing by Author "Astorga, Francisca"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Assessing Variation in the Individual-Level Impacts of a Multihost PathogenLewin, Zachary M.; Astorga, Francisca; Escobar, Luis E.; Carver, Scott (Hindawi, 2023-05-27)Most pathogens infect more than one host species, and given infection, the individual-level impact they have varies among host species. Nevertheless, variation in individual-level impacts of infection remains poorly characterised. Using the impactful and host-generalist ectoparasitic mite Sarcoptes scabiei (causing sarcoptic mange), we assessed individual-level variation in pathogen impacts by (1) compiling all documented individual-level impacts of S. scabiei across free-living host species, (2) quantifying and ranking S. scabiei impacts among host species, and (3) evaluating factors associated with S. scabiei impacts. We compiled individual-level impacts of S. scabiei infection from 77 host species, spanning 31 different impacts, and totalling 683 individual-level impact descriptions. The most common impacts were those affecting the skin, alopecia (130 descriptions), and hyperkeratosis coverage (106). From these impacts, a standardised metric was generated for each species (average impact score (AIS) with a 0-1 range), as a proxy of pathogen virulence allowing quantitative comparison of S. scabiei impacts among host species while accounting for the variation in the number and types of impacts assessed. The Japanese raccoon dog (Nyctereutes viverrinus) was found to be the most impacted host (AIS 0.899). We applied species inclusion criteria for ranking and found more well-studied species tended to be those impacted more by S. scabiei (26/27 species AIS ud_less_than 0.5). AIS had relatively weak relationships with predictor variables (methodological, phylogenetic, and geographic). There was a tendency for Diprotodontia, Artiodactyla, and Carnivora to be the most impacted taxa and for research to be focussed in developed regions of the world. This study is the first quantitative assessment of individual-level pathogen impacts of a multihost parasite. The proposed methodology can be applied to other multihost pathogens of public health, animal welfare, and conservation concern and enables further research to address likely causes of variation in pathogen virulence among host species.
- Carnivore–livestock conflicts in Chile: evidence and methods for mitigationRodriguez, Valeska; Poo-Muñoz, Daniela A.; Escobar, Luis E.; Astorga, Francisca; Medina-Vogel, Gonzalo (Berryman Institute, 2019)Human population growth and habitat loss have exacerbated human–wildlife conflicts worldwide. We explored trends in human–wildlife conflicts (HWCs) in Chile using scientific and official reports to identify areas and species with higher risk of conflicts and tools available for their prevention and mitigation. The puma (Puma concolor) was considered the most frequent predator; however, fox (Lycalopex spp.) and free-ranging or feral dog (Canis lupus familiaris) attacks were also common. Our results suggest that the magnitude of puma conflicts may be overestimated. Domestic sheep (Ovis spp.) and poultry (Galliformes) were the most common species predated. Livestock losses were widespread across Chile but were highest in San Jose de Maipo, located in central Chile, and Cochrane, La Unión, and Lago Verde in south Chile municipalities. Livestock guardian dogs and the livestock insurance, as a part of the Agriculture Insurance of Chile, were identified as the most promising tools to mitigate HWCs, short- and mid-term, respectively. However, longer-term strategies should focus on improving livestock management through extension (i.e., farmer education) programs for local communities. In Chile, HWCs negatively impact small farmers and wild carnivore populations. An interinstitutional and interdisciplinary strategy integrating input from government and nongovernmental organizations, farmers, and academia is needed to achieve effective carnivore conservation in the long-term.
- Distributional ecology of Andes hantavirus: a macroecological approachAstorga, Francisca; Escobar, Luis E.; Poo-Muñoz, Daniela A.; Escobar-Dodero, Joaquin; Rojas-Hucks, Sylvia; Alvarado-Rybak, Mario; Duclos, Melanie; Romero-Alvarez, Daniel; Molina-Burgos, Blanca E.; Peñafiel-Ricaurte, Alexandra; Toro, Frederick; Peña-Gómez, Francisco T.; Peterson, A. Townsend (2018-06-22)Background: Hantavirus pulmonary syndrome (HPS) is an infection endemic in Chile and Argentina, caused by Andes hantavirus (ANDV). The rodent Oligoryzomys longicaudatus is suggested as the main reservoir, although several other species of Sigmodontinae are known hosts of ANDV. Here, we explore potential ANDV transmission risk to humans in southern South America, based on eco-epidemiological associations among: six rodent host species, seropositive rodents, and human HPS cases. Methods: We used ecological niche modeling and macroecological approaches to determine potential geographic distributions and assess environmental similarity among rodents and human HPS cases. Results: Highest numbers of rodent species (five) were in Chile between 35° and 41°S latitude. Background similarity tests showed niche similarity in 14 of the 56 possible comparisons: similarity between human HPS cases and the background of all species and seropositive rodents was supported (except for Abrothrix sanborni). Of interest among the results is the likely role of O. longicaudatus, Loxodontomys micropus, Abrothrix olivaceus, and Abrothrix longipilis in HPS transmission to humans. Conclusions: Our results support a role of rodent species’ distributions as a risk factor for human HPS at coarse scales, and suggest that the role of the main reservoir (O. longicaudatus) may be supported by the broader rodent host community in some areas.
- International meeting on sarcoptic mange in wildlife, June 2018, Blacksburg, Virginia, USAAstorga, Francisca; Carver, Scott; Almberg, Emily S.; Sousa, Giovane R.; Wingfield, Kimberly; Niedringhaus, Kevin D.; Van Wick, Peach; Rossi, Luca; Xie, Yue; Cross, Paul C.; Angelone, Samer; Gortázar, Christian; Escobar, Luis E. (BMC, 2018-08-03)Sarcoptic mange is a globally distributed disease caused by the burrowing mite Sarcoptes scabiei, which also causes scabies in humans. A wide and increasing number of wild mammal species are reported to be susceptible to mange; however, the impacts of the disease in wildlife populations, mechanisms involved in its eco-epidemiological dynamics, and risks to public and ecosystem health are still unclear. Major gaps exist concerning S. scabiei host specificity and the mechanisms involved in the different presentations of the disease, which change between individuals and species. Immunological responses to the mite may have a relevant role explaining these different susceptibilities, as these affect the clinical signs, and consequently, the severity of the disease. Recently, some studies have suggested sarcoptic mange as an emerging threat for wildlife, based on several outbreaks with increased severity, geographical expansions, and novel wild hosts affected. Disease ecology experts convened for the “International Meeting on Sarcoptic Mange in Wildlife” on 4–5 June 2018, hosted by the Department of Fish and Wildlife Conservation at Virginia Tech in Blacksburg, Virginia, USA. The meeting had a structure of (i) pre-workshop review; (ii) presentation and discussions; and (iii) identification of priority research questions to understand sarcoptic mange in wildlife. The workgroup concluded that research priorities should be on determining the variation in modes of transmission for S. scabiei in wildlife, factors associated with the variation of disease severity among species, and long-terms effects of the mange in wildlife populations. In this note we summarize the main discussions and research gaps identified by the experts.
- Sarcoptic mange: An emerging panzootic in wildlifeEscobar, Luis E.; Carver, Scott; Cross, Paul C.; Rossi, Luca; Almberg, Emily S.; Yabsley, Michael J.; Niedringhaus, Kevin D.; Van Wick, Peach; Dominguez-Villegas, Ernesto; Gakuya, Francis; Xie, Yue; Angelone, Samer; Gortázar, Christian; Astorga, Francisca (2021-03-23)Sarcoptic mange, a skin infestation caused by the mite Sarcoptes scabiei, is an emerging disease for some species of wildlife, potentially jeopardizing their welfare and conservation. Sarcoptes scabiei has a near-global distribution facilitated by its forms of transmission and use of a large diversity of host species (many of those with broad geographic distribution). In this review, we synthesize the current knowledge concerning the geographic and host taxonomic distribution of mange in wildlife, the epidemiological connections between species, and the potential threat of sarcoptic mange for wildlife conservation. Recent sarcoptic mange outbreaks in wildlife appear to demonstrate ongoing geographic spread, increase in the number of hosts and increased virulence. Sarcoptic mange has been reported in at least 12 orders, 39 families and 148 species of domestic and wild mammals, making it one of the most generalist ectoparasites of mammals. Taxonomically, the orders with most species found infested so far include Perissodactyla (67% species from the entire order), Artiodactyla (47%), and Diprotodontia (67% from this order). This suggests that new species from these mammal orders are likely to suffer cross-species transmission and be reported positive to sarcoptic mange as surveillance improves. We propose a new agenda for the study of sarcoptic mange in wildlife, including the study of the global phylogeography of S. scabiei, linkages between ecological host traits and sarcoptic mange susceptibility, immunology of individuals and species, development of control strategies in wildlife outbreaks and the effects of global environmental change in the sarcoptic mange system. The ongoing transmission globally and sustained spread among areas and wildlife species make sarcoptic mange an emerging panzootic in wildlife. A better understanding of sarcoptic mange could illuminate the aspects of ecological and evolutionary drivers in cross-species transmission for many emerging diseases.