Browsing by Author "Athamneh, Ahmad I. M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Characterizing the Phenotypic Responses of Escherichia coli to Multiple 4-Carbon Alcohols with Raman SpectroscopyZu, Theresah N. K.; Athamneh, Ahmad I. M.; Senger, Ryan S. (MDPI, 2016-01-25)The phenotypic responses of E. coli cells exposed to 1.2% (v/v) of 1-butanol, 2-butanol, isobutanol, tert-butanol, and 1,4-butanediol were studied in near real-time using Raman spectroscopy. A method of “chemometric fingerprinting” was employed that uses multivariate statistics (principal component analysis and linear discriminant analysis) to identify E. coli phenotypic changes over a 180 min post-treatment time-course. A toxicity study showed extreme variability among the reduction in culture growth, with 1-butanol showing the greatest toxicity and 1,4-butanediol showing relatively no toxicity. Chemometric fingerprinting showed distinct phenotype clusters according to the type of alcohol: (i) 1-butanol and 2-butanol (straight chain alcohols); (ii) isobutanol and tert-butanol (branched chain alcohols); and (iii) control and 1,4-butanediol (no terminal alkyl end) treated cells. While the isobutanol and tert-butanol treated cells led to similar phenotypic responses, isobutanol was significantly more toxic. In addition, the phenotypic response was found to take place largely within 60 min of culture treatment; however, significant responses (especially for 1,4-butanediol) were still occurring at 180 min post-treatment. The methodology presented here identified different phenotypic responses to seemingly similar 4-carbon alcohols and can be used to study phenotypic responses of virtually any cell type under any set of environmental conditions or genetic manipulations.
- Near-Real-Time Analysis of the Phenotypic Responses of Escherichia coli to 1-Butanol Exposure Using Raman SpectroscopyZu, Theresah N. K.; Athamneh, Ahmad I. M.; Wallace, Robert S.; Collakova, Eva; Senger, Ryan S. (American Society for Microbiology, 2014-08-25)Raman spectroscopy was used to study the time course of phenotypic responses of Escherichia coli (DH5 alpha) to 1-butanol exposure (1.2% [vol/vol]). Raman spectroscopy is of interest for bacterial phenotyping because it can be performed (i) in near real time, (ii) with minimal sample preparation (label-free), and (iii) with minimal spectral interference from water. Traditional offline analytical methodologies were applied to both 1-butanol-treated and control cells to draw correlations with Raman data. Here, distinct sets of Raman bands are presented that characterize phenotypic traits of E. coli with maximized correlation to offline measurements. In addition, the observed time course phenotypic responses of E. coli to 1.2% (vol/vol) 1-butanol exposure included the following: (i) decreased saturated fatty acids levels, (ii) retention of unsaturated fatty acids and low levels of cyclopropane fatty acids, (iii) increased membrane fluidity following the initial response of increased rigidity, and (iv) no changes in total protein content or protein-derived amino acid composition. For most phenotypic traits, correlation coefficients between Raman spectroscopy and traditional off-line analytical approaches exceeded 0.75, and major trends were captured. The results suggest that near-real-time Raman spectroscopy is suitable for approximating metabolic and physiological phenotyping of bacterial cells subjected to toxic environmental conditions.
- Probiotics: insights and new opportunities for Clostridioides difficile interventionPal, Rusha; Athamneh, Ahmad I. M.; Deshpande, Riddhi; Ramirez, Jose A. R.; Adu, Kayode T.; Muthuirulan, Pushpanathan; Pawar, Shrikant; Biazzo, Manuele; Apidianakis, Yiorgos; Sundekilde, Ulrik Kraemer; de la Fuente-Nunez, Cesar; Martens, Mark G.; Tegos, George P.; Seleem, Mohamed N. (Taylor & Francis, 2022-05-15)Clostridioides difficile infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen C. difficile. Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis. In this review, we will discuss major commensal probiotic strains that have the potential to prevent and/or treat CDI and its recurrence, reassess the efficacy of probiotics supplementation as a CDI intervention, delve into lessons learned from probiotic modulation of the immune system, explore avenues like genome-scale metabolic network reconstructions, genome sequencing, and multi-omics to identify novel strains and understand their functionality, and discuss the current regulatory framework, challenges, and future directions.