Browsing by Author "Azab, Mohamed Mahmoud Mahmoud"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Cooperative Autonomous Resilient Defense Platform for Cyber-Physical SystemsAzab, Mohamed Mahmoud Mahmoud (Virginia Tech, 2013-02-28)Cyber-Physical Systems (CPS) entail the tight integration of and coordination between computational and physical resources. These systems are increasingly becoming vital to modernizing the national critical infrastructure systems ranging from healthcare, to transportation and energy, to homeland security and national defense. Advances in CPS technology are needed to help improve their current capabilities as well as their adaptability, autonomicity, efficiency, reliability, safety and usability. Due to the proliferation of increasingly sophisticated cyber threats with exponentially destructive effects, CPS defense systems must systematically evolve their detection, understanding, attribution, and mitigation capabilities. Unfortunately most of the current CPS defense systems fall short to adequately provision defense services while maintaining operational continuity and stability of the targeted CPS applications in presence of advanced persistent attacks. Most of these defense systems use un-coordinated combinations of disparate tools to provision defense services for the cyber and physical components. Such isolation and lack of awareness of and cooperation between defense tools may lead to massive resource waste due to unnecessary redundancy, and potential conflicts that can be utilized by a resourceful attacker to penetrate the system. Recent research argued against the suitability of the current security solutions to CPS environments. We assert the need for new defense platforms that effectively and efficiently manage dynamic defense missions and toolsets in real-time with the following goals: 1) Achieve asymmetric advantage to CPS defenders, prohibitively increasing the cost for attackers; 2) Ensure resilient operations in presence of persistent and evolving attacks and failures; and 3) Facilitate defense alliances, effectively and efficiently diffusing defense intelligence and operations transcending organizational boundaries. Our proposed solution comprehensively addresses the aforementioned goals offering an evolutionary CPS defense system. The presented CPS defense platform, termed CyPhyCARD (Cooperative Autonomous Resilient Defenses for Cyber-Physical systems) presents a unified defense platform to monitor, manage, and control the heterogeneous composition of CPS components. CyPhyCARD relies on three interrelated pillars to construct its defense platform. CyPhyCARD comprehensively integrates these pillars, therefore building a large scale, intrinsically resilient, self- and situation-aware, cooperative, and autonomous defense cloud-like platform that provisions adequate, prompt, and pervasive defense services for large-scale, heterogeneously-composed CPS. The CyPhyCARD pillars are: 1) Autonomous management platform (CyberX) for CyPhyCARD's foundation. CyberX enables application elasticity and autonomic adaptation to changes by runtime diversity employment, enhances the application resilience against attacks and failures by multimodal recovery mechanism, and enables unified application execution on heterogeneously composed platforms by a smart employment of a fine-grained environment-virtualization technology. 2) Diversity management system (ChameleonSoft) built on CyberX. ChameleonSoft encrypts software execution behavior by smart employment of runtime diversity across multiple dimensions to include time, space, and platform heterogeneity inducing a trace-resistant moving-target defense that works on securing CyPhyCARD platform against software attacks. 3) Evolutionary Sensory system (EvoSense) built on CyberX. EvoSense realizes pervasive, intrinsically-resilient, situation-aware sense and response system to seamlessly effect biological-immune-system like defense. EvoSense acts as a middle layer between the defense service provider(s) and the Target of Defense (ToD) creating a uniform defense interface that hides ToD's scale and heterogeneity concerns from defense-provisioning management. CyPhyCARD is evaluated both qualitatively and quantitatively. The efficacy of the presented approach is assessed qualitatively, through a complex synthetic CPS attack scenario. In addition to the presented scenario, we devised multiple prototype packages for the presented pillars to assess their applicability in real execution environment and applications. Further, the efficacy and the efficiency of the presented approach is comprehensively assessed quantitatively by a set of custom-made simulation packages simulating each CyPhyCARD pillar for performance and security evaluation. The evaluation illustrated the success of CyPhyCARD and its constructing pillars to efficiently and effectively achieve its design objective with reasonable overhead.
- Framework for Embodied Telepresence: A Meeting Case StudyPark, Juwon (Virginia Tech, 2023-02-02)Current video conferencing tools lack a sense of presence. Telepresence can improve the current video conferencing by providing feeling of presence at a different location from remote location. Most recent telepresence systems are built with the devices that are not accessible and uncomfortable for the daily meeting purpose. This work proposes a framework for embodied telepresence system that suits a daily meeting case the best. Based on our new telepresence framework, a new system architecture and design requirements are constructed. The system architecture shows how the telepresence system needs to be structured, and a design requirement helps to understand the needs of the system. With this framework we were able to implement a user friendly and accessible telepresence system. Our telepresence system enables users to control the telepresence robot with smartphone controller. The controller has four features: (1) Smartphone orientation control, (2) Position save and playback, (3) Local smart light bulb control, and (4) visual cue. At the end, our work evaluates the developed telepresence system by measuring the performances of given tasks to the participants. The evaluation shows that our system provides a sense of presence to both remote and local users. However, the proposed telepresence framework and system requires farther improvements to provide better usability.
- Securing Cloud Containers through Intrusion Detection and RemediationAbed, Amr Sayed Omar (Virginia Tech, 2017-08-29)Linux containers are gaining increasing traction in both individual and industrial use. As these containers get integrated into mission-critical systems, real-time detection of malicious cyber attacks becomes a critical operational requirement. However, a little research has been conducted in this area. This research introduces an anomaly-based intrusion detection and remediation system for container-based clouds. The introduced system monitors system calls between the container and the host server to passively detect malfeasance against applications running in cloud containers. We started by applying a basic memory-based machine learning technique to model the container behavior. The same technique was also extended to learn the behavior of a distributed application running in a number of cloud-based containers. In addition to monitoring the behavior of each container independently, the system used prior knowledge for a more informed detection system. We then studied the feasibility and effectiveness of applying a more sophisticated deep learning technique to the same problem. We used a recurrent neural network to model the container behavior. We evaluated the system using a typical web application hosted in two containers, one for the front-end web server, and one for the back-end database server. The system has shown promising results for both of the machine learning techniques used. Finally, we describe a number of incident handling and remediation techniques to be applied upon attack detection.
- Transforming SDOH Screening: Towards a General Framework for Transformer-based Prediction of Social Determinants of HealthKing III, Kenneth Hale (Virginia Tech, 2024-09-09)Social Determinants of Health (SDOH) play a crucial role in healthcare outcomes, yet identifying them from unstructured patient data remains a challenge. This research explores the potential of Large Language Models (LLMs) for automated SDOH identification from patient notes. We propose a general framework for SDOH screening that is simple and straightforward. We leverage existing SDOH datasets, adapting and combining them to create a more comprehensive benchmark for this task, addressing the research gap of limited datasets. Using the benchmark and proposed framework, we conclude by conducting several preliminary experiments exploring and comparing promising LLM system implementations. Our findings highlight the potential of LLMs for automated SDOH screening while emphasizing the need for more robust datasets and evaluation frameworks.