Browsing by Author "Azcarate-Peril, M. Andrea"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Modeling human enteric dysbiosis and rotavirus immunity in gnotobiotic pigsTwitchell, Erica; Tin, Christine; Wen, Ke; Zhang, Husen; Becker-Dreps, Sylvia; Azcarate-Peril, M. Andrea; Vilchez, Samuel; Li, Guohua; Ramesh, Ashwin; Weiss, Mariah; Lei, Shaohua; Bui, Tammy; Yang, Xingdong; Schultz-Cherry, Stacey L.; Yuan, Lijuan (2016)BACKGROUND: Rotavirus vaccines have poor efficacy in infants from low- and middle-income countries. Gut microbiota is thought to influence the immune response to oral vaccines. Thus, we developed a gnotobiotic (Gn) pig model of enteric dysbiosis to study the effects of human gut microbiota (HGM) on immune responses to rotavirus vaccination, and the effects of rotavirus challenge on the HGM by colonizing Gn pigs with healthy HGM (HHGM) or unhealthy HGM (UHGM). The UHGM was from a Nicaraguan infant with a high enteropathy score (ES) and no seroconversion following administration of oral rotavirus vaccine, while the converse was characteristic of the HHGM. Pigs were vaccinated, a subset was challenged, and immune responses and gut microbiota were evaluated. RESULTS: Significantly more rotavirus-specific IFN-γ producing T cells were in the ileum, spleen, and blood of HHGM than those in UHGM pigs after three vaccine doses, suggesting HHGM induces stronger cell-mediated immunity than UHGM. There were significant correlations between multiple Operational Taxonomic Units (OTUs) and frequencies of IFN-γ producing T cells at the time of challenge. There were significant positive correlations between Collinsella and CD8+ T cells in blood and ileum, as well as CD4+ T cells in blood, whereas significant negative correlations between Clostridium and Anaerococcus, and ileal CD8+ and CD4+ T cells. Differences in alpha diversity and relative abundances of OTUs were detected between the groups both before and after rotavirus challenge. CONCLUSION: Alterations in microbiome diversity and composition along with correlations between certain microbial taxa and T cell responses warrant further investigation into the role of the gut microbiota and certain microbial species on enteric immunity. Our results support the use of HGM transplanted Gn pigs as a model of human dysbiosis during enteric infection, and oral vaccine responses.
- Modeling human enteric dysbiosis and rotavirus immunity in gnotobiotic pigs. [poster]Twitchell, Erica; Tin, Christine; Wen, Ke; Zhang, Husen; Becker-Dreps, Sylvia; Azcarate-Peril, M. Andrea; Vilchez, Samuel; Li, Guohua; Ramesh, Ashwin; Weiss, Mariah; Lei, Shaohua; Bui, Tammy; Yang, Xingdong; Schultz-Cherry, Stacey L.; Yuan, Lijuan (2016-12)Background Oral vaccines, such as those for rotavirus are less efficacious in children from underdeveloped regions, where most severe disease occurs, than in children from more affluent areas. This disparity may be due to altered gut microbiota composition (dysbiosis), environmental enteropathy (EE), high maternal antibody titers, malnutrition, or influence of concurrent enteropathogens. Composition of gut microbiota in children is influenced by method of delivery, environmental hygiene and nutritional status. Studies have shown composition of gut microbiota to be significantly different between African and northern European infants and between malnourished and well-nourished children. A recent study has shown that EE was associated with failure of the oral rotavirus vaccine Rotarix, and underperformance of the oral polio vaccine. An animal model to study the effects of enteric dysbiosis on oral vaccine immunity is needed to evaluate potential treatments to reverse the dysbiosis and/or improve vaccine efficacy. Pigs and humans have similar immune systems, high genomic and protein sequence homology, omnivorous diet, and colonic fermentation, making pigs valuable models in biomedical research. The neonatal gnotobiotic (Gn) pig is a well-established model of human rotavirus disease and immunity.