Browsing by Author "Babiceanu, Mihaela"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Analysis of global gene expression changes in human bronchial epithelial cells exposed to spores of the allergenic fungus, Alternaria alternataBabiceanu, Mihaela; Howard, B. A.; Rumore, A. C.; Kita, H.; Lawrence, Christopher B. (Frontiers, 2013-07-19)Exposure and sensitivity to ubiquitous airborne fungi such as Alternaria alternata have long been implicated in the development, onset, and exacerbation of chronic allergic airway disorders. This present study is the first to investigate global changes in host gene expression during the interaction of cultured human bronchial epithelial cells and live Alternaria spores. In in vitro experiments human bronchial epithelial cells (BEAS-2B) were exposed to spores or media alone for 24 h. RNA was collected from three biological replicates per treatment and was used to assess changes in gene expression patterns using Affymetrix Human Genome U133 Plus 2.0 Arrays. In cells treated with Alternaria spores compared to controls, 613 probe sets representing 460 individual genes were found differentially expressed (p <= 0.05). In this set of 460 statistically significant, differentially expressed genes, 397 genes were found to be up-regulated and 63 were down-regulated. Of these 397 up-regulated genes, 156 genes were found to be up-regulated >= 2 fold. Interestingly, none of the 63 down-regulated genes were found differentially expressed at <=-2 fold. Differentially expressed genes were identified following statistical analysis and subsequently used for pathway and network evaluation. Interestingly, many cytokine and chemokine immune response genes were up-regulated with a particular emphasis on interferon-inducible genes. Genes involved in cell death, retinoic acid signaling, and TLR3 response pathways were also significantly up-regulated. Many of the differentially up-regulated genes have been shown in other systems to be associated with innate immunity, inflammation and/or allergic airway diseases. This study now provides substantial information for further investigating specific genes and innate immune system pathways activated by Alternaria in the context of allergic airway diseases.
- Analysis of the Allergenic Potential of the Ubiquitous Airborne Fungus Alternaria Using BioinformaticsBabiceanu, Mihaela (Virginia Tech, 2011-06-15)Among the environmental airborne fungi one of the most common is Alternaria alternata. From a clinical perspective Alternaria has long been associated with IgE-mediated, histamine-dependent mold allergy, allergic rhinitis, chronic rhinosinusitis (CRS) and asthma. Recently it has been proven that an abnormal immunological response to Alternaria most likely contributes to the pathogenesis of upper respiratory airway disorders. In this body of work, we present for the first time results of several sets of experiments including, 1) the analysis of A. alternata spore germination expressed sequence tags (ESTs), 2) the survey of global allergen homologues in fungal genomes, and 3) the first microarray experiment investigating airway epithelial cell responses to this fungus. In the first project, the analyses of the EST dataset offered a first look into the gene content of A. alternata and represents the beginning of future research of this ubiquitous fungus. Annotation and classification of ESTs revealed a number of genes that could be involved in the immunomodulation process of the human immune response toward fungi. We also discovered that the majority of known allergens are expressed during the spore germination phase of A. alternata. For investigating the allergenic potential of fungi we developed a whole genome approach by querying fungal genome sequences (A. alternata, A. brassicicola, and Aspergillus fumigatus) with a database of all known allergenic proteins from a taxonomically diverse group of organisms. Interestingly, we identified homologues of diverse types of allergens in these fungal genomes and also many homologues of allergens from other organisms including those from pollen, insects, and venoms. Finally, we investigated global gene expression changes of human airway cells in response to A. alternata and an ∆alt a 1 deletion mutant. We found that wild type Alternaria spores induced significant changes in gene expression patterns in human airway epithelial cells, especially known immune response genes. Furthermore, results of these analyses revealed that Alt a 1 is a major factor in inducing epithelial inflammatory responses.
- Recurrent chimeric fusion RNAs in non-cancer tissues and cellsBabiceanu, Mihaela; Qin, Fujun; Xie, Zhongqiu; Jia, Yuemeng; Lopez, Kevin; Janus, Nick; Facemire, Loryn; Kumar, Shailesh; Pang, Yuwei; Qi, Yanjun; Lazar, Iuliana M.; Li, Hui (2016-04-07)Gene fusions and their products (RNA and protein) were once thought to be unique features to cancer. However, chimeric RNAs can also be found in normal cells. Here, we performed, curated and analyzed nearly 300 RNA-Seq libraries covering 30 different non-neoplastic human tissues and cells as well as 15 mouse tissues. A large number of fusion transcripts were found. Most fusions were detected only once, while 291 were seen in more than one sample. We focused on the recurrent fusions and performed RNA and protein level validations on a subset. We characterized these fusions based on various features of the fusions, and their parental genes. They tend to be expressed at higher levels relative to their parental genes than the non-recurrent ones. Over half of the recurrent fusions involve neighboring genes transcribing in the same direction. A few sequence motifs were found enriched close to the fusion junction sites. We performed functional analyses on a few widely expressed fusions, and found that silencing them resulted in dramatic reduction in normal cell growth and/or motility. Most chimeras use canonical splicing sites, thus are likely products of 'intergenic splicing'. We also explored the implications of these non-pathological fusions in cancer and in evolution.