Browsing by Author "Ball, William P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The Chesapeake Bay program modeling system: Overview and recommendations for future developmentHood, Raleigh R.; Shenk, Gary W.; Dixon, Rachel L.; Smith, Sean M. C.; Ball, William P.; Bash, Jesse O.; Batiuk, Rich; Boomer, Kathy; Brady, Damian C.; Cerco, Carl; Claggett, Peter; de Mutsert, Kim; Easton, Zachary M.; Elmore, Andrew J.; Friedrichs, Marjorie A. M.; Harris, Lora A.; Ihde, Thomas F.; Lacher, Lara; Li, Li; Linker, Lewis C.; Miller, Andrew; Moriarty, Julia; Noe, Gregory B.; Onyullo, George E.; Rose, Kenneth; Skalak, Katie; Tian, Richard; Veith, Tamie L.; Wainger, Lisa A.; Weller, Donald; Zhang, Yinglong Joseph (2021-09-15)The Chesapeake Bay is the largest, most productive, and most biologically diverse estuary in the continental United States providing crucial habitat and natural resources for culturally and economically important species. Pressures from human population growth and associated development and agricultural intensification have led to excessive nutrient and sediment inputs entering the Bay, negatively affecting the health of the Bay ecosystem and the economic services it provides. The Chesapeake Bay Program (CBP) is a unique program formally created in 1983 as a multi-stakeholder partnership to guide and foster restoration of the Chesapeake Bay and its watershed. Since its inception, the CBP Partnership has been developing, updating, and applying a complex linked modeling system of watershed, airshed, and estuary models as a planning tool to inform strategic management decisions and Bay restoration efforts. This paper provides a description of the 2017 CBP Modeling System and the higher trophic level models developed by the NOAA Chesapeake Bay Office, along with specific recommendations that emerged from a 2018 workshop designed to inform future model development. Recom-mendations highlight the need for simulation of watershed inputs, conditions, processes, and practices at higher resolution to provide improved information to guide local nutrient and sediment management plans. More explicit and extensive modeling of connectivity between watershed landforms and estuary sub-areas, estuarine hydrodynamics, watershed and estuarine water quality, the estuarine-watershed socioecological system, and living resources will be important to broaden and improve characterization of responses to targeted nutrient and sediment load reductions. Finally, the value and importance of maintaining effective collaborations among jurisdictional managers, scientists, modelers, support staff, and stakeholder communities is emphasized. An open collaborative and transparent process has been a key element of successes to date and is vitally important as the CBP Partnership moves forward with modeling system improvements that help stakeholders evolve new knowledge, improve management strategies, and better communicate outcomes.
- Supporting cost-effective watershed management strategies for Chesapeake Bay using a modeling and optimization frameworkKaufman, Daniel E.; Shenk, Gary W.; Bhatt, Gopal; Asplen, Kevin W.; Devereux, Olivia H.; Rigelman, Jessica R.; Ellis, J. Hugh; Hobbs, Benjamin F.; Bosch, Darrell J.; Van Houtven, George L.; McGarity, Arthur E.; Linker, Lewis C.; Ball, William P. (2021-10)Extensive efforts to adaptively manage nutrient pollution rely on Chesapeake Bay Program's (Phase 6) Watershed Model, called Chesapeake Assessment Scenario Tool (CAST), which helps decision-makers plan and track implementation of Best Management Practices (BMPs). We describe mathematical characteristics of CAST and develop a constrained nonlinear BMP-subset model, software, and visualization framework. This represents the first publicly available optimization framework for exploring least-cost strategies of pollutant load control for the United States' largest estuary. The optimization identifies implementation options for a BMP subset modeled with load reduction effectiveness factors, and the web interface facilitates interactive exploration of >30,000 solutions organized by objective, nutrient control level, and for similar to 200 counties. We assess framework performance and demonstrate modeled cost improvements when comparing optimization-suggested proposals with proposals inspired by jurisdiction plans. Stakeholder feedback highlights the framework's current utility for investigating cost-effective tradeoffs and its usefulness as a foundation for future analysis of restoration strategies.