Browsing by Author "Barnes, Edwin"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Dynamically corrected gates in silicon singlet-triplet spin qubitsWalelign, Habitamu Y.; Cai, Xinxin; Li, Bikun; Barnes, Edwin; Nichol, John M. (American Physical Society, 2024-12-10)Fault-tolerant quantum computation requires low physical-qubit gate errors. Many approaches exist to reduce gate errors, including both hardware- and control-optimization strategies. Dynamically corrected gates are designed to cancel specific errors and offer the potential for high-fidelity gates, but they have yet to be implemented in singlet-triplet spin qubits in semiconductor quantum dots, due in part to the stringent control constraints in these systems. In this work, we experimentally implement dynamically corrected gates designed to mitigate hyperfine noise in a singlet-triplet qubit realized in a Si/SiGe double quantum dot. The corrected gates reduce infidelities by about a factor of 3, resulting in gate fidelities above 0.99 for both identity and Hadamard gates. The gate performances depend sensitively on pulse distortions, and their specific performance reveals an unexpected distortion in our experimental setup.
- High-throughput assessment of the controllability of a nuclear-spin register coupled to a defectDakis, Filippos; Takou, Evangelia; Barnes, Edwin; Economou, Sophia E. (American Physical Society, 2024-11-25)Quantum memories play a key role in facilitating tasks within quantum networks and quantum information processing, including secure communications, advanced quantum sensing, and distributed quantum computing. Progress in characterizing large nuclear-spin registers coupled to defect electronic spins has been significant, but selecting memory qubits remains challenging due to the multitude of possible assignments. Numerical simulations for evaluating entangling gate fidelities encounter obstacles, restricting research to small registers, while experimental investigations are time-consuming and often limited to well-understood samples. Here we present an efficient methodology for systematically assessing the controllability of defect systems coupled to nuclear-spin registers. We showcase the approach by investigating the generation of entanglement links between silicon monovacancy or divacancy centers in SiC and randomly selected sets of nuclear spins within the two-species (13C and 29Si) nuclear register. We quantify the performance of entangling gate operations and present the achievable gate fidelities, considering both the size of the register and the presence of unwanted nuclear spins. We find that some control sequences perform better than others depending on the number of target versus bath nuclei. This efficient approach is a guide for both experimental investigation and engineering, facilitating the high-throughput exploration of suitable defect systems for quantum memories.
- Hilbert space fragmentation and subspace scar time-crystallinity in driven homogeneous central-spin modelsKumar, Abhishek; Frantzeskakis, Rafail; Barnes, Edwin (American Physical Society, 2025-01-03)We study the stroboscopic nonequilibrium quantum dynamics of periodically kicked Hamiltonians involving homogeneous central-spin interactions. The system exhibits a strong fragmentation of Hilbert space into four-dimensional Floquet-Krylov subspaces, which oscillate between two disjointed two-dimensional subspaces and thus break the discrete time-translation symmetry of the system. Our analytical and numerical analyses reveal that fully polarized states of the satellite spins exhibit fragmentations that are stable against perturbations and have high overlap with Floquet eigenstates of atypically low bipartite entanglement entropy (scar states). Motivated by the breaking of discrete time translation symmetry by Floquet-Krylov subspaces, we introduce a novel type of time crystal that we call a "subspace time crystal."We present evidence of robust time-crystalline behavior in the form of a period doubling of the total magnetization of fully polarized satellite spin states that persists over long timescales. We compute nonequilibrium phase diagrams with respect to a magnetic field, coupling terms, and pulse error for various interaction types, including Heisenberg, Ising, XXZ, and XX. We also discuss possible experimental realizations of scar time crystals in color center, quantum dot, and rare-earth ion platforms.
- Long-distance photon-mediated and short-distance entangling gates in three-qubit quantum dot spin systemsEstakhri, Nooshin M.; Warren, Ada; Economou, Sophia E.; Barnes, Edwin (American Physical Society, 2024-10-11)Superconducting resonator couplers will likely become an essential component in modular semiconductor quantum dot (QD) spin qubit processors, as they help alleviate crosstalk and wiring issues as the number of qubits increases. Here, we focus on a three-qubit system composed of two modules: a two-electron triple QD resonator coupled to a single-electron double QD. Using a combination of analytical techniques and numerical results, we derive an effective Hamiltonian that describes the three-qubit logical subspace and show that it accurately captures the dynamics of the system. We examine the performance of short-range and long-range entangling gates, revealing the effect of a spectator qubit in reducing the gate fidelities in both cases. We further study the competition between nonadiabatic errors and spectator-associated errors in short-range operations and quantify their relative importance across practical parameter ranges for short and long gate times. We also analyze the impact of charge noise together with residual coupling to the spectator qubit on intermodule entangling gates and find that for current experimental settings, leakage errors are the main source of infidelities in these operations. Our results help pave the way toward identifying optimal modular QD architectures for quantum information processing on semiconductor chips.
- Parametrization and optimizability of pulse-level variational quantum eigensolversSherbert, Kyle M.; Amer, Hisham; Economou, Sophia E.; Barnes, Edwin; Mayhall, Nicholas J. (American Physical Society, 2025-02-14)In conventional variational quantum eigensolvers (VQEs), trial states are prepared by applying series of parameterized gates to a reference state, with the gate parameters being varied to minimize the energy of the target system. Recognizing that the gates are intermediates which are ultimately compiled into a set of control pulses to be applied to each qubit in the lab, the recently proposed ctrl-VQE algorithm takes the amplitudes, frequencies, and phases of the pulse as the variational parameters used to minimize the molecular energy. In this work, we explore how all three degrees of freedom interrelate with one another. To this end, we consider several distinct strategies to parameterize the control pulses, assessing each one through numerical simulations of a transmonlike device. For each parameterization, we contrast the pulse duration required to prepare a good ansatz, and the difficulty to optimize that ansatz from a well-defined initial state. We deduce several guiding heuristics to implement practical ctrl-VQE in hardware, which we anticipate will generalize for generic device architectures.
- Protocol for nearly deterministic parity projection on two photonic qubitsLiu, Chenxu; Frantzeskakis, Rafail; Economou, Sophia E.; Barnes, Edwin (American Physical Society, 2024-11-15)Photonic parity projection plays an important role in photonic quantum information processing. Nondestructive parity projections normally require high-fidelity controlled-Z gates between photonic and matter qubits, which can be experimentally demanding. In this paper, we propose a nearly deterministic parity projection protocol on two photonic qubits which only requires stable matter-photon controlled-phase gates. We also demonstrate that our protocol can tolerate moderate Gaussian phase errors in the controlled-phase gates as well as Pauli errors on the matter qubits. The fact that our protocol does not require perfect controlled-Z gates makes it more amenable to experimental implementation. Although we focus on photonic qubits, our protocol can be applied to any physical system or circuit with imperfect controlled-Z gates. Our protocol also provides a new optimization space for parity projection operations on various physical platforms, which is potentially beneficial for achieving high-fidelity parity projection operations.
- Reducing measurement costs by recycling the Hessian in adaptive variational quantum algorithmsRamoa, Mafalda; Santos, Luis Paulo; Mayhall, Nicholas J.; Barnes, Edwin; Economou, Sophia E. (IOP Publishing, 2024-11-18)Adaptive protocols enable the construction of more efficient state preparation circuits in variational quantum algorithms (VQAs) by utilizing data obtained from the quantum processor during the execution of the algorithm. This idea originated with Adaptive Derivative-Assembled Problem-Tailored variational quantum eigensolver (ADAPT-VQE), an algorithm that iteratively grows the state preparation circuit operator by operator, with each new operator accompanied by a new variational parameter, and where all parameters acquired thus far are optimized in each iteration. In ADAPT-VQE and other adaptive VQAs that followed it, it has been shown that initializing parameters to their optimal values from the previous iteration speeds up convergence and avoids shallow local traps in the parameter landscape. However, no other data from the optimization performed at one iteration is carried over to the next. In this work, we propose an improved quasi-Newton optimization protocol specifically tailored to adaptive VQAs. The distinctive feature in our proposal is that approximate second derivatives of the cost function are recycled across iterations in addition to optimal parameter values. We implement a quasi-Newton optimizer where an approximation to the inverse Hessian matrix is continuously built and grown across the iterations of an adaptive VQA. The resulting algorithm has the flavor of a continuous optimization where the dimension of the search space is augmented when the gradient norm falls below a given threshold. We show that this inter-optimization exchange of second-order information leads the approximate Hessian in the state of the optimizer to be consistently closer to the exact Hessian. As a result, our method achieves a superlinear convergence rate even in situations where the typical implementation of a quasi-Newton optimizer converges only linearly. Our protocol decreases the measurement costs in implementing adaptive VQAs on quantum hardware as well as the runtime of their classical simulation.
- Scaling adaptive quantum simulation algorithms via operator pool tilingVan Dyke, John S.; Shirali, Karunya; Barron, George S.; Mayhall, Nicholas J.; Barnes, Edwin; Economou, Sophia E. (American Physical Society, 2024-02-16)Adaptive variational quantum simulation algorithms use information from a quantum computer to dynamically create optimal trial wave functions for a given problem Hamiltonian. A key ingredient in these algorithms is a predefined operator pool from which trial wave functions are constructed. Finding suitable pools is critical for the efficiency of the algorithm as the problem size increases. Here, we present a technique called operator pool tiling that facilitates the construction of problem-tailored pools for arbitrarily large problem instances. By first performing an Adaptive Derivative-Assembled Problem-Tailored Ansatz Variational Quantum Eigensolver (ADAPT-VQE) calculation on a smaller instance of the problem using a large, but computationally inefficient, operator pool, we extract the most relevant operators and use them to design more efficient pools for larger instances. We demonstrate the method here on strongly correlated quantum spin models in one and two dimensions, finding that ADAPT automatically finds a highly effective ansatz for these systems. Given that many problems, such as those arising in condensed matter physics, have a naturally repeating lattice structure, we expect the pool tiling method to be a widely applicable technique apt for such systems.