Browsing by Author "Barrett, Scott M."
Now showing 1 - 20 of 47
Results Per Page
Sort Options
- Characteristics of Logging Businesses across Virginia’s Diverse Physiographic RegionsBarrett, Scott M.; Bolding, M. Chad; Munsell, John F. (MDPI, 2017-11-28)Logging businesses play an important role in implementing forest management plans and delivering the raw material needed by forest products mills. Understanding the characteristics of the logging workforce can help forest managers make better decisions related to harvesting operations. We surveyed logging business owners across Virginia’s three physiographic regions (Mountains, Piedmont, and Coastal Plain). Overall, logging businesses reported an average production rate of 761.37 t/business/week, but this varied substantially by region, with the highest production rates in the Coastal Plain (1403.55 t/business/week), followed by the Piedmont (824.69 t/business/week) and the Mountains (245.42 t/business/week). Many operations in the Mountains rely primarily on manual felling (66.6% of respondents) and these operations often have lower production rates. Across all regions, 81.7% of reported production came from operations that primarily utilized rubber-tired feller-bunchers for felling. Logging businesses were sorted based on reported production capacity and then divided into three groups (high, medium, and low production) based on total reported production. Across all regions, the majority of reported production was produced by the high production logging businesses. This was highest in the Piedmont, where the high production businesses accounted for 74.8% of total reported production.
- A Comparison of Forest Biomass and Conventional Harvesting Effects on Estimated Erosion, Best Management Practice Implementation, Ground Cover, and Residual Woody Debris in VirginiaGarren, Austin M.; Bolding, Michael Chad; Barrett, Scott M.; Hawks, Eric M.; Aust, Wallace Michael; Coates, Thomas Adam (MDPI, 2023-11-17)Expanding markets for renewable energy feedstocks have increased demand for woody biomass. Concerns associated with forest biomass harvesting include increased erosion, the applicability of conventional forestry Best Management Practices (BMPs) for protecting water quality, and reduced woody debris retention for soil nutrients and cover. We regionally compared the data and results from three prior independent studies that estimated erosion, BMP implementation, and residual woody debris following biomass and conventional forest harvests in the Mountains, Piedmont, and Coastal Plain of Virginia. Estimated erosion was higher in the Mountains due to steep slopes and operational challenges. Mountain skid trails were particularly concerning, comprising only 8.47% of the total area but from 37.9 to 81.1% of the total site-wide estimated erosion. BMP implementation varied by region and harvest type, with biomass sites having better implementation than conventional sites, and conventional Mountain sites having lower implementation than other regions. Sufficient woody debris remained for BMPs on both harvest types in all regions, with conventional Mountain sites retaining twice that of Coastal Plain sites. BMPs reduced the estimated erosion on both site types suggesting increased implementation could reduce potential erosion in problematic areas. Therefore, proper BMP implementation should be ensured, particularly in Mountainous terrain, regardless of harvest type.
- A Computer Simulation Model for Predicting the Impacts of Log Truck Turn-Time on Timber Harvesting System ProductivityBarrett, Scott M. (Virginia Tech, 2001-01-18)A computer simulation model was developed to represent a logging contractor's harvesting and trucking system of wood delivery from the contractor's in-woods landing to the receiving mill. The Log Trucking System Simulation model (LTSS) focuses on the impacts to logging contractors as changes in truck turn times cause an imbalance between harvesting and trucking systems. The model was designed to serve as a practical tool that can illustrate the magnitude of cost and productivity changes as the delivery capacity of the contractor's trucking system changes. The model was used to perform incremental analyses using an example contractor's costs and production rates to illustrate the nature of impacts associated with changes in the contractor's trucking system. These analyses indicated that the primary impact of increased turn times occurs when increased delivery time decreases the number of loads per day the contractor's trucking system can deliver. When increased delivery times cause the trucking system to limit harvesting production, total costs per delivered ton increase. In cases where trucking significantly limits system production, total costs per delivered ton would decrease if additional trucks were added. The model allows the user to simulate a harvest with up to eight products trucked to different receiving mills. The LTSS model can be utilized without extensive data input requirements and serves as a user friendly tool for predicting cost and productivity changes in a logging contractor's harvesting and trucking system based on changes in truck delivery times.
- Consider Logging Residue Needs for BMP Implementation When Harvesting Biomass for EnergyBarrett, Scott M.; Aust, W. Michael; Bolding, M. Chad (Virginia Cooperative Extension, 2014-08-07)This publication reviews the Best Management Practices (BMP) on harvesting forestry operations particularly when harvesting biomass.
- Consider logging residue needs for BMP implementation when harvesting biomass for energyBarrett, Scott M.; Aust, W. Michael; Bolding, M. Chad (Virginia Cooperative Extension, 2019)Logging residues for Best Management Practices. Residue can be used for slash or for water protection.
- Economic Tools to Improve Forest Practices' OutcomesJunqueira Sartori, Pedro (Virginia Tech, 2023-09-01)This PhD dissertation work delves into critical issues within the forestry business related to carbon sequestration, land value maximization and climate change vulnerability. The study proposes different tools to enhance the efficiency and outcomes of forest practices. Chapter two involves an enhanced forest rotation deferral methodology for carbon dioxide sequestration, focusing on the forest's final product destination passed the Faustmann optimal rotation age. Instead of giving the same value for pulp wood and saw timber, the research acknowledges the benefit of increased carbon dioxide stored in saw timber materials. To drive landowners to the socially optimum rotation age, where the marginal benefits of extended carbon storage equal the private marginal cost of postponing forest rotation, an incentive based mechanism is proposed, using subsidies. Through sensitivity analysis on the underlying assumptions, the socially optimal rotation is consistently greater than the currently applied one-year harvesting deferral, and smaller than longer extensions, such as 20 years deferred rotations. In chapter three, a novel approach to design Streamside Management Zones widths that vary according to different landscape characteristics is presented, as opposed to the constant command and control width currently used in Virginia. This adaptive approach allows landowners to maximize land value, while ensuring water quality protection. To determine the sediment retention equation as a function of SMZ slope, width, and soil texture, we use data derived from the Watershed Erosion Prediction Project. By simulating different regulatory constraints concerning accepted sediment delivery, the study shows the tradeoff between water quality and land expectation value through the changes in the opportunity cost of Streamside Management Zones. Lastly, chapter four centers on a dataset collected in India about tree planting species choice followed by a second model that incorporates socio-economic, as well as revealed preference management choices, and tree planting species as explanatory variables in a binary crop loss model. The findings reveal that tree planting, except for fruit trees, compared to agricultural crops, diminishes the household's probability of facing losses due to climate change, extreme weather events and pest attacks. Specifically, there is a 14.4% reduction in the probability of facing a loss when planting Eucalypt and Casuarina trees, a 7.6% reduction when planting palm trees, and 13.5% reduction when planting multiple trees, which evidences how trees are less vulnerable. Throughout this dissertation, the interdisciplinary research uses rigorous methodologies, comprehensive data analysis, and environmental economics theoretical foundation, culminating in valuable insights and potential policy recommendations to enhance forest practices in environmental challenging times.
- Effectiveness of skid trail closure techniques forest operations research highlightsBarrett, Scott M.; Aust, W. Michael; Bolding, M. Chad (Virginia Cooperative Extension, 2019)Overland skid trails produce less erosion than bladed skid trails because they retained more ground cover. Slopes produced 82% less erosion than the bladed skid trails.
- Effectiveness of Skid Trail Closure Techniques. Forest Operations Research HighlightsBarrett, Scott M.; Aust, W. Michael; Bolding, M. Chad (Virginia Cooperative Extension, 2014-08-07)Best Management Practices (BMP) guidelines offer multiple possible options for practices to minimize erosion and sedimentation and protect water quality. This research focused on evaluating post-harvest erosion from skid trails with different closure methods.
- Effectiveness of State Developed and Implemented Forestry Best Management Practices in the United StatesCristan, Richard (Virginia Tech, 2016-06-28)The passage of the Federal Water Pollution Control Act of 1972 required states to develop forestry BMPs to help reduce potential nonpoint source pollution from forest operations. Properly applied forestry best management practices (BMPs) have since been proven to protect water quality from forest operations. This research project reviewed BMP effectiveness studies in the U.S., assessed current state developed and implemented of forestry BMPs, and developed a simple method to estimate potential erosion from forest operations for the Piedmont physiographic region based on previous studies. Eighty-one BMP effectiveness studies were reviewed. The review of past effectiveness studies indicates that water quality protection is increased when BMPs are implemented correctly. These effectiveness studies provide states with valuable information on how their BMP guidelines are achieving the goals defined by the Federal Water Pollution Control Act. Every U.S. state has forestry BMP guidelines. These guidelines may be non-regulatory, quasi-regulatory, or regulatory depending on the state. Twenty states reported implementing non-regulatory BMP guidelines, 19 quasi-regulatory BMP guidelines, and 11 regulatory BMP guidelines. State forestry agencies were reported as being the lead agency responsible for BMP monitoring in 35 states. The national forestry BMP implementation rate was 91% (32 states). However, states did report deficiencies for specific BMP guideline categories. Supplementary to the reviewed BMP effectiveness studies, forest erosion studies in the southeastern U.S. that quantified erosion rates from forest operations were also reviewed. Erosion rates obtained from the literature were reviewed by operation categories (timber harvesting, forest roads, skid trails, log landings, stream crossings, and streamside management zones) and physiographic region (Mountains, Piedmont, Gulf Coastal Plain, and Atlantic Coastal Plain). There were numerous research gaps regarding erosion rates from forest operations for all the regions except the Piedmont region. The Piedmont region was selected for developing a method to estimate potential erosion from forest operations. This erosion estimation method is a quick and potentially useful tool for estimating potential erosion; however, it is based on limited data from the Piedmont region only. The basic method approach might be considered for the other physiographic regions, but further research is needed to fill current knowledge gaps.
- Effectiveness of Temporary Stream Crossing Closure Techniques Forest Operations Research HighlightsBarrett, Scott M.; Aust, W. Michael; Bolding, M. Chad (Virginia Cooperative Extension, 2014-08-08)The focus of Virginia's silvicultural water quality law is prevention of sedimentation, so stream crossings are an area where proper closure and stabilization are critical. This research focused on evaluating sedimentation in streams as a result of three different options for temporary stream crossing closure Best Management Practices (BMPs).
- Effectiveness of temporary stream crossing closure techniques. Forest operations research highlightsBarrett, Scott M.; Aust, W. Michael; Bolding, M. Chad (Virginia Cooperative Extension, 2019)Slash was the most cost effective of the treatments. When slash is applied as a part of the harvesting operation it can be effective at reducing sediment and is the most cost effective treatment
- Efficacy of operational stream crossing best management practices on truck roads and skid trails in the Mountains, Piedmont, and Coastal Plain of VirginiaDangle, Chandler Lipham (Virginia Tech, 2018-06-08)Forestry best management practices (BMPs) programs were developed by individual states in response to the Clean Water Act in order to protect water quality during and after timber harvests. Our research goals are to compare BMP implementation at stream crossings by region and road type in Virginia and to quantify effectiveness of BMPs by developing hypothetical upgrades and determining upgrade costs. Stream crossings (75 truck, 79 skidder) sampled for BMP implementation were on operational harvests conducted in 2016, from the Mountains, Piedmont, and Coastal Plain of Virginia. Erosion rates of stream crossing approaches were modeled using the Universal Soil Loss Equation modified for forest lands (USLE-Forest) and Water Erosion Prediction Project (WEPP) methodologies. Implementation ratings (BMP-, BMP-standard, BMP+) were developed to characterize crossings with respect to state implementation standards. Costs for upgrading crossings to a higher BMP category were estimated by adjusting cover percentages and approach lengths. Sixty-three percent of stream crossings were classified as BMP-standard, with an average erosion rate of 7.6 Mg/ha/yr; 25% of crossings were classified as BMP+, with an average erosion rate of 1.7 Mg/ha/yr; and 12% of crossings were classified as BMP-, with an average erosion rate of 26.2 Mg/ha/yr. Potential erosion rates decreased with increasing BMP implementation (p <0.0001). Average BMP implementation audit scores for stream crossings were 88% on skid trails and 82% on truck roads. To upgrade from a BMP- to BMP-standard, the cost-benefit ratio of dollars to tons of sediment prevented averaged $166.62/Mg for skid trails and $2274.22/Mg for truck roads. Enhancement to the BMP+ level is not economically efficient and BMP implementation at stream crossings reaches maximum efficiency at the BMP-standard level.
- Estimated Sediment Protection Efficiences for Increasing Levels of Best Management Practices on Forest Harvests in the Piedmont, USACristan, Richard; Aust, W. Michael; Bolding, M. Chad; Barrett, Scott M. (MDPI, 2019-11-07)In-stream watershed level evaluations confirm that application of recommended forestry best management practices (BMPs) can minimize sedimentation following management, while on-site erosion research shows that BMPs reduce erosion from individual forest operations, thus implying watershed-level sediment reductions. Assessments of forest operations and sediment have developed very few sediment delivery ratios (SDR). Linking BMP levels (low, standard recommendation, high) within specific forest operations to sedimentation could enable managers to evaluate BMP effects. Reported data regarding forest operations, erosion rates and SDR by forest operation, and BMP implementation levels were sufficient within the Piedmont region to allow approximations of sediment delivery and BMP efficiency. Existing United States Department of Agriculture (USDA) Forest Service reports and published erosion and sediment research were used to comprise the following method. For regional annual harvests, estimated sediment deliveries (Mg year−1) = annual harvest area (ha year−1) × weighted average erosion rate from all forest operations (Mg ha−1 year−1) × SDR (unitless ratio). Weighted average erosion rates for all forest operations were determined by applying areas in each operational activity (%) × estimated erosion per operation (Mg ha−1 year−1). In comparing published data, standard BMPs reduced estimated sedimentation by 75% compared to low BMP implementation levels. This supports forestry BMP efficiency findings reported for sediment removals in watershed studies. Higher levels of BMP implementation were estimated to potentially remove nearly all forest operation-produced sediment. Values of this pilot study should be viewed cautiously, as estimates were based on limited data, estimated operations, and limited SDRs; are based on BMP categories that vary between states; and address only one year following harvests. However, the approach provided approximations that facilitate BMP evaluations and can be improved with additional data. This methodology highlights the importance of accurate estimates of erosion rates, SDRs, sediment masses, and area for operations. This supports the importance of state programs, which have increased BMP implementation rates and compliance options with BMP program maturation.
- Estimating Costs and Effectiveness of Upgrades in Forestry Best Management Practices for Stream CrossingsNolan, Lindsay; Aust, W. Michael; Barrett, Scott M.; Bolding, M. Chad; Brown, Kristopher; McGuire, Kevin J. (MDPI, 2015-12-08)Forestry Best Management Practices (BMPs) are used for protection of water quality at forest stream crossings, yet effects and costs for gradients of BMPs are not well documented. We evaluated forty-two truck road and skid trail stream crossings using three surrogates of BMP adequacy: (1) potential erosion rates for stream crossing approaches; (2) adequacy of stream crossing BMPs; and (3) overall BMP rating (BMP−, BMP-standard, and BMP+). Subsequently, BMP upgrades were recommended for enhancing BMP− or BMP-standard stream crossings. Costs for BMP upgrades were estimated using an existing road and skid trail cost method. The majority of truck road stream crossings were culverts, while skid trail stream crossings were primarily portable bridges. Potential erosion estimates, BMP audit scores, and BMP ratings all indicated that skid crossings have lower BMP implementation than truck road crossings. BMP improvements commonly identified for skid trail and truck crossings included addition of cover and water control structures. Improved BMPs at skid trail crossings were less expensive than those at truck road crossings. Current BMP guidelines provide economical and effective techniques for reducing erosion, and BMP upgrades have the potential to reduce erosion rates to similar levels found in undisturbed forests.
- Evaluating Energywood Harvesting Operations in The Lower Mid-Atlantic Region of the United StatesGarren, Austin Mack (Virginia Tech, 2022-04-12)Increased markets for renewable energy feedstocks have led to increased energywood production in the Southeastern United States. Energywood requires additional processing and is often the lowest value product generated, making profitability difficult. Additionally, numerous environmental concerns surround energywood harvesting, such as potential increased erosion, applicability and adequacy of conventional water quality best management practices (BMPs), increased area in road network features due to increased machine trafficking, and reduced quantities of residual woody debris. Energywood harvesting operations have been established in the lower Mid-Atlantic region of the U.S. for several decades, and research examining these operations provides insight into various aspects of the sustainability of the practice in this region and similar locations elsewhere. Therefore, this research provides a literature review on the practice of energywood harvesting, followed by four studies on energywood harvesting operations in the lower Mid-Atlantic region of the U.S. The first study evaluated the productivity and costs of two Appalachian Mountain and three Coastal Plain energywood harvests, providing stakeholders with a comparison of harvesting operations that can be used to make better-informed decisions regarding the efficient and economical harvest of energywood. The second study compared estimated erosion, operational feature areas, BMP implementation rates, ground cover characteristics, and downed woody debris quantities following 10 energywood and 10 conventional harvests in the Mountains of Virginia. The third study detailed a survey conducted among energywood business owners in Virginia designed to characterize harvesting operations and markets, assess business owner opinions related to the current and future state of the industry, and update/expand the results of a previous survey from 2014. The fourth study combined data from the second study with data from two other independent studies, comparing site impact metrics from energywood and conventional harvests across the Mountain, Piedmont, and Coastal Plain regions of Virginia. In the first study, cut and haul costs averaged $32.07/tonne and ranged from $26.19 to $38.28/tonne. Hauling consistently comprised the largest function cost at an average of $12.24/tonne. Harvesting system analysis also highlighted the importance of ensuring a balanced equipment mix to lower costs and ensure efficiency. In the second study, conventional harvests had higher estimated erosion contributions from skid trails (P = 0.089) and averaged more estimated erosion mass overall than energywood harvests, despite being significantly smaller in size (P = 0.054). There was significantly less area in heavy slash (P = 0.076) and lower estimated mass of residual downed woody debris (P = 0.001) on energywood sites than conventional sites (10.98 and 27.95 tons/acre, respectively). Site-wide BMP implementation scores (P = 0.041), as well as those for Streamside Management Zones (SMZs) (P = 0.024), and skidding (P = 0.063) were significantly higher on energywood sites than conventional sites. BMP implementation scores were significant predictors of estimated erosion rates (P < 0.001, R² = 59%), indicating that adequate levels of existing water quality BMPs are effective for erosion control on both conventional and energywood harvests. The third study indicated that energywood harvesting operations in Virginia were generally conventional single-crew roundwood operations utilizing their own residues for energywood. Production levels varied widely with energywood comprising an average 31% of total production. Material was comminuted utilizing large (650 median horsepower) older (13.2 years average) whole-tree chippers fed by a single loader. Coastal Plain operations were larger scale than Piedmont operations, though those in the Piedmont had been in business longer. Businesses had a median of $400,000 USD invested in energywood production equipment, which was double their median investment in the previous survey. Logging businesses that had produced energywood longer were significantly (P = 0.0391) more likely to report profitability. In addition, loggers reported deriving numerous non-market benefits from energywood production (e.g., improved aesthetics and cleaner sites, leading to increased landowner satisfaction), with most business owners planning to continue production in the future. The fourth study revealed that estimated erosion was higher in the Mountains due to steep slopes and operational challenges. BMP implementation varied by region and harvest type, with energywood sites having better implementation than conventional sites, and conventional Mountain sites having lower implementation than other regions. Sufficient woody debris remained for BMPs on both harvest types in all regions, with conventional Mountain sites retaining twice that of Coastal Plain sites. BMPs effectively reduced potential erosion on both site types; therefore, increased implementation could likely lower erosion potential in problematic areas. Collectively, this research provides a wholistic representation of energywood harvesting operations in the lower Mid-Atlantic region of the U.S., allowing stakeholders in the region and other similar locations to make informed decisions regarding its sustainable harvest.
- Forest Certification Perspectives in the Wood Products Supply Chain in Virginia, U.S.A.Munsell, John F.; Ares, Adrian; Barrett, Scott M.; Bond, Brian H.; Gagnon, Jennifer L. (MDPI, 2017-09-26)Participation among private forest owners, logging contractors, and wood products manufacturers in the forest certification sector remains low. Those that enroll are mainly large-acreage owners and specialized manufacturers. Little is known about certification perspectives across the supply chain and how they relate. Comparing what owners, contractors, and manufacturers think about certification would increase insight regarding sector growth. In this study, 2,741 private forest owners, logging contractors, and wood products manufacturers in Virginia, U.S.A. were surveyed about their beliefs regarding the impact of certification on economic opportunities and image and the extent to which they think it positively affects the forestry sector and understand how to certify forestland. Co-orientation was used to map alignment and predictions between respondents. Owner and contractor responses were similar and predictions about each other mostly accurate, but manufacturer responses and predictions were largely incongruent. Manufacturers generally aligned more so with contractors than owners but contractors identified slightly more with owners. Owners and contractors shared perspectives and a discernable identity, whereas manufacturers viewed certification in a less positive light. Implications for participation in forest certification focus largely on interrelationships of actor perspectives regardless of scale and emphasize the roles each can play in the forest certification sector.
- Forest Harvesting in Virginia: Characteristics of Virginia's Logging OperationsBarrett, Scott M.; Chandler, Joshua L.; Bolding, M. Chad; Munsell, John F. (Virginia Cooperative Extension, 2002-12-10)This publication is based on a 2009 survey of Virginia loggers and provides a snapshot of logging operations across the state. The goal is to provide insight into the basic functions of a forest harvesting operation in Virginia, and to provide specific operational details related to the characteristics and production levels of Virginia's logging businesses. It provides introductory information for those not familiar with forest harvesting operations, as well as specific results of the logger survey and more detailed comparisons of logging across the Commonwealth.
- Forestry Best Management Practices Relationships with Aquatic and Riparian Fauna: A ReviewWarrington, Brooke M.; Aust, W. Michael; Barrett, Scott M.; Ford, W. Mark; Dolloff, C. Andrew; Schilling, Erik B.; Wigley, T. Bently; Bolding, M. Chad (MDPI, 2017-09-07)Forestry best management practices (BMPs) were developed to minimize water pollution from forestry operations by primarily addressing sediment and sediment transport, which is the leading source of pollution from silviculture. Implementation of water quality BMPs may also benefit riparian and aquatic wildlife, although wildlife benefits were not driving forces for BMP development. Therefore, we reviewed literature regarding potential contributions of sediment-reducing BMPs to conservation of riparian and aquatic wildlife, while realizing that BMPs also minimize thermal, nutrient, and chemical pollution. We reached five important conclusions: (1) a significant body of research confirms that forestry BMPs contribute to the protection of water quality and riparian forest structure; (2) data-specific relationships between forestry BMPs and reviewed species are limited; (3) forestry BMPs for forest road construction and maintenance, skid trails, stream crossings, and streamside management zones (SMZs) are important particularly for protection of water quality and aquatic species; (4) stream crossings should be carefully selected and installed to minimize sediment inputs and stream channel alterations; and (5) SMZs promote retention of older-age riparian habitat with benefits extending from water bodies to surrounding uplands. Overall, BMPs developed for protection of water quality should benefit a variety of riparian and aquatic species that are sensitive to changes in water quality or forest structure.
- Guide to threatened and endangered species on private lands in VirginiaGagnon, Jennifer L.; Barrett, Scott M.; Parkhurst, James A. (Virginia Cooperative Extension, 2010-10-05)Under the federal Endangered Species Act and Virginia's endangered species regulations, landowners are required to minimize negative effects on threatened and endangered species. This publication summarizes the relevant legal statutes and explains the steps to be taken by landowners and natural resource professionals to meet the legal requirements.
- Guide to Threatened and Endangered Species on Private Lands in VirginiaGagnon, Jennifer L.; Barrett, Scott M.; Parkhurst, James A. (Virginia Cooperative Extension, 2018-09-06)Under the federal Endangered Species Act and Virginia's endangered species regulations, landowners are required to minimize negative effects on threatened and endangered species. This publication summaries the relevant statutes and explains the steps that landowners and natural resource professionals should follow to meet the legal requirements.
- «
- 1 (current)
- 2
- 3
- »