Browsing by Author "Bayat, Mahmoud"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Assessing Biotic and Abiotic Effects on Biodiversity Index Using Machine LearningBayat, Mahmoud; Burkhart, Harold E.; Namiranian, Manouchehr; Hamidi, Seyedeh Kosar; Heidari, Sahar; Hassani, Majid (MDPI, 2021-04-10)Forest ecosystems play multiple important roles in meeting the habitat needs of different organisms and providing a variety of services to humans. Biodiversity is one of the structural features in dynamic and complex forest ecosystems. One of the most challenging issues in assessing forest ecosystems is understanding the relationship between biodiversity and environmental factors. The aim of this study was to investigate the effect of biotic and abiotic factors on tree diversity of Hyrcanian forests in northern Iran. For this purpose, we analyzed tree diversity in 8 forest sites in different locations from east to west of the Caspian Sea. 15,988 trees were measured in 655 circular permanent sample plots (0.1 ha). A combination of machine learning methods was used for modeling and investigating the relationship between tree diversity and biotic and abiotic factors. Machine learning models included generalized additive models (GAMs), support vector machine (SVM), random forest (RF) and K-nearest–neighbor (KNN). To determine the most important factors related to tree diversity we used from variables such as the average diameter at breast height (DBH) in the plot, basal area in largest trees (BAL), basal area (BA), number of trees per hectare, tree species, slope, aspect and elevation. A comparison of RMSEs, relative RMSEs, and the coefficients of determination of the different methods, showed that the random forest (RF) method resulted in the best models among all those tested. Based on the results of the RF method, elevation, BA and BAL were recognized as the most influential factors defining variation of tree diversity.
- Modeling Tree Growth Responses to Climate Change: A Case Study in Natural Deciduous Mountain ForestsBayat, Mahmoud; Knoke, Thomas; Heidari, Sahar; Hamidi, Seyedeh Kosar; Burkhart, Harold E.; Jaafari, Abolfazl (MDPI, 2022-10-31)Climate change has significant effects on forest ecosystems around the world. Since tree diameter increment determines forest volume increment and ultimately forest production, an accurate estimate of this variable under future climate change is of great importance for sustainable forest management. In this study, we modeled tree diameter increment under the effects of current and expected future climate change, using multilayer perceptron (MLP) artificial neural networks and linear mixed-effect model in two sites of the Hyrcanian Forest, northern Iran. Using 573 monitoring fixed-area (0.1 ha) plots, we measured and calculated biotic and abiotic factors (i.e., diameter at breast height (DBH), basal area in the largest trees (BAL), basal area (BA), elevation, aspect, slope, precipitation, and temperature). We investigated the effect of climate change in the year 2070 under two reference scenarios; RCP 4.5 (an intermediate scenario) and RCP 8.5 (an extreme scenario) due to the uncertainty caused by the general circulation models. According to the scenarios of climate change, the amount of annual precipitation and temperature during the study period will increase by 12.18 mm and 1.77 °C, respectively. Further, the results showed that the impact of predicted climate change was not very noticeable and the growth at the end of the period decreased by only about 7% annually. The effect of precipitation and temperature on the growth rate, in fact, neutralize each other, and therefore, the growth rate does not change significantly at the end of the period compared to the beginning. Based on the models’ predictions, the MLP model performed better compared to the linear mixed-effect model in predicting tree diameter increment.
- Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, IranJanizadeh, Saeid; Avand, Mohammadtaghi; Jaafari, Abolfazl; Phong, Tran Van; Bayat, Mahmoud; Ahmadisharaf, Ebrahim; Prakash, Indra; Pham, Binh Thai; Lee, Saro (MDPI, 2019-09-30)Floods are some of the most destructive and catastrophic disasters worldwide. Development of management plans needs a deep understanding of the likelihood and magnitude of future flood events. The purpose of this research was to estimate flash flood susceptibility in the Tafresh watershed, Iran, using five machine learning methods, i.e., alternating decision tree (ADT), functional tree (FT), kernel logistic regression (KLR), multilayer perceptron (MLP), and quadratic discriminant analysis (QDA). A geospatial database including 320 historical flood events was constructed and eight geo-environmental variables—elevation, slope, slope aspect, distance from rivers, average annual rainfall, land use, soil type, and lithology—were used as flood influencing factors. Based on a variety of performance metrics, it is revealed that the ADT method was dominant over the other methods. The FT method was ranked as the second-best method, followed by the KLR, MLP, and QDA. Given a few differences between the goodness-of-fit and prediction success of the methods, we concluded that all these five machine-learning-based models are applicable for flood susceptibility mapping in other areas to protect societies from devastating floods.
- Projection Matrix Models: A Suitable Approach for Predicting Sustainable Growth in Uneven-Aged and Mixed Hyrcanian ForestsSalehnasab, Abotaleb; Burkhart, Harold E.; Bayat, Mahmoud; Khaleghi, Bagher; Heidari, Sahar; Masood Awan, Hafiz Umair (MDPI, 2022-06-01)The Hyrcanian forests of Iran are mainly managed with the single-selection silvicultural technique. Despite significant ecological benefits associated with selection cutting, this type of forest management leads towards more challenging situations where it is difficult to maintain and practice successful forestry than in even-aged systems. Therefore, this study provides relevant management tools in the form of models to estimate low growth levels in Hyrcanian forests. In the present study, estimation of the population growth rate and then the allowable cut rate of these forests using a matrix model have been calculated in the Gorazbon district. For this purpose, the data of 256 permanent sample plots measured during the years between 2003 and 2012, as well as the data recorded about the trees harvested according to the forestry plan, have been used. As a first step, the most frequently occurring tree species were divided into four groups (beech, hornbeam, chestnut-leaved oak, and other species). Compartments of the district were divided into two groups of logged and unlogged compartments. The purpose of this division was to estimate the allowable cut and compare its volume with the volumes of observed and predicted allowable cuts obtained from forestry plans. The results showed that the total operated allowable cut (OAC) in logged compartments was more than the estimated allowable cut (EAC). In unlogged compartments, the total predicted allowable cut (PAC) was more than EAC. A comparison of EAC and OAC showed that hornbeam has been harvested more than its potential. However, chestnut-leaved oak and other species group have depicted opposite trends. Our models provide important advancements for estimating allowable cut that can enhance the goal of practicing sustainable forestry.