Browsing by Author "Benoit, Joshua B."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pestSparks, Michael E.; Bansal, Raman; Benoit, Joshua B.; Blackburn, Michael B.; Chao, Hsu; Chen, Mengyao; Cheng, Sammy; Childers, Christopher; Dinh, Huyen; Doddapaneni, Harsha V.; Dugan, Shannon; Elpidina, Elena N.; Farrow, David W.; Friedrich, Markus; Gibbs, Richard A.; Hall, Brantley; Han, Yi; Hardy, Richard W.; Holmes, Christopher J.; Hughes, Daniel S. T.; Ioannidis, Panagiotis; Cheatle Jarvela, Alys M.; Johnston, J. Spencer; Jones, Jeffery W.; Kronmiller, Brent A.; Kung, Faith; Lee, Sandra L.; Martynov, Alexander G.; Masterson, Patrick; Maumus, Florian; Munoz-Torres, Monica; Murali, Shwetha C.; Murphy, Terence D.; Muzny, Donna M.; Nelson, David R.; Oppert, Brenda; Panfilio, Kristen A.; Paula, Débora P.; Pick, Leslie; Poelchau, Monica F.; Qu, Jiaxin; Reding, Katie; Rhoades, Joshua H.; Rhodes, Adelaide; Richards, Stephen; Richter, Rose; Robertson, Hugh M.; Rosendale, Andrew J.; Tu, Zhijian Jake; Velamuri, Arun S.; Waterhouse, Robert M.; Weirauch, Matthew T.; Wells, Jackson T.; Werren, John H.; Worley, Kim C.; Zdobnov, Evgeny M.; Gundersen-Rindal, Dawn E. (2020-03-14)Background Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species’ feeding and habitat traits, defining potential targets for pest management strategies. Results Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys’ capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. Conclusions Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.
- The chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus uncovers patterns of genome evolution in mosquitoesRyazansky, Sergei S.; Chen, Chujia; Potters, Mark; Naumenko, Anastasia N.; Lukyanchikova, Varvara; Masri, Reem A.; Brusentsov, Ilya I.; Karagodin, Dmitriy A.; Yurchenko, Andrey A.; dos Anjos, Vitor L.; Haba, Yuki; Rose, Noah H.; Hoffman, Jinna; Guo, Rong; Menna, Theresa; Kelley, Melissa; Ferrill, Emily; Schultz, Karen E.; Qi, Yumin; Sharma, Atashi; Deschamps, Stéphane; Llaca, Victor; Mao, Chunhong; Murphy, Terence D.; Baricheva, Elina M.; Emrich, Scott; Fritz, Megan L.; Benoit, Joshua B.; Sharakhov, Igor V.; McBride, Carolyn S.; Tu, Zhijian; Sharakhova, Maria V. (2024-01-25)Background: Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. Methods: In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. Results: We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. Conclusion: The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.
- Genomic analysis of two phlebotomine sand fly vectors of leishmania from the new and old WorldLabbe, Frederic; Abdeladhim, Maha; Abrudan, Jenica; Araki, Alejandra Saori; Araujo, Ricardo N.; Arensburger, Peter; Benoit, Joshua B.; Brazil, Reginaldo Pecanha; Bruno, Rafaela V.; Rivas, Gustavo Bueno da Silva D. S.; de Abreu, Vinicius Carvalho; Charamis, Jason; Coutinho-Abreu, Iliano V.; da Costa-Latge, Samara G.; Darby, Alistair; Dillon, Viv M.; Emrich, Scott J.; Fernandez-Medina, Daniela; Gontijo, Nelder Figueiredo; Flanley, Catherine M.; Gatherer, Derek; Genta, Fernando A.; Gesing, Sandra; Giraldo-Calderon, Gloria I.; Gomes, Bruno; Aguiar, Eric Roberto Guimaraes Rocha; Hamilton, James GC C.; Hamarsheh, Omar; Hawksworth, Mallory; Hendershot, Jacob M.; Hickner, Paul V.; Imler, Jean-Luc; Ioannidis, Panagiotis; Jennings, Emily C.; Kamhawi, Shaden; Karageorgiou, Charikleia; Kennedy, Ryan C.; Krueger, Andreas; Latorre-Estivalis, Jose M.; Ligoxygakis, Petros; Meireles-Filho, Antonio Carlos A.; Minx, Patrick; Miranda, Jose Carlos; Montague, Michael J.; Nowling, Ronald J.; Oliveira, Fabiano; Ortigao-Farias, Joao; Pavan, Marcio G.; Pereira, Marcos Horacio; Pitaluga, Andre Nobrega; Olmo, Roenick Proveti; Ramalho-Ortigao, Marcelo; Ribeiro, Jose MC C.; Rosendale, Andrew J.; Sant'Anna, Mauricio RV V.; Scherer, Steven E.; Secundino, Nagila FC C.; Shoue, Douglas A.; Moraes, Caroline da Silva D. S.; Gesto, Joao Silveira Moledo; Souza, Nataly Araujo; Syed, Zainulabueddin; Tadros, Samuel; Teles-de-Freitas, Rayane; Telleria, Erich L.; Tomlinson, Chad; Traub-Cseko, Yara M.; Marques, Joao Trindade; Tu, Zhijian; Unger, Maria F.; Valenzuela, Jesus; Ferreira, Flavia; de Oliveira, Karla PV V.; Vigoder, Felipe M.; Vontas, John; Wang, Lihui; Weedall, Gareth D.; Zhioua, Elyes; Richards, Stephen; Warren, Wesley C.; Waterhouse, Robert M.; Dillon, Rod J.; McDowell, Mary Ann (Public Library of Science, 2023-04-12)Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.
- Unique features of a global human ectoparasite identified through sequencing of the bed bug genomeBenoit, Joshua B.; Adelman, Zach N.; Reinhardt, Klaus; Dolan, Amanda M.; Poelchau, Monica; Jennings, Emily C.; Szuter, Elise M.; Hagan, Richard W.; Gujar, Hemant; Shukla, Jayendra Nath; Zhu, Fang; Mohan, M.; Nelson, David R.; Rosendale, Andrew J.; Derst, Christian; Resnik, Valentina; Wernig, Sebastian; Menegazzi, Pamela; Wegener, Christian; Peschel, Nicolai; Hendershot, Jacob M.; Blenau, Wolfgang; Predel, Reinhard; Johnston, Paul R.; Ioannidis, Panagiotis; Waterhouse, Robert M.; Nauen, Ralf; Schorn, Corinna; Ott, Mark-Christoph; Maiwald, Frank; Johnston, J. Spencer; Gondhalekar, Ameya D.; Scharf, Michael E.; Peterson, Brittany F.; Raje, Kapil R.; Hottel, Benjamin A.; Armisen, David; Crumiere, Antonin Jean Johan; Refki, Peter Nagui; Santos, Maria Emilia; Sghaier, Essia; Viala, Severine; Khila, Abderrahman; Ahn, Seung-Joon; Childers, Christopher; Lee, Chien-Yueh; Lin, Han; Hughes, Daniel S. T.; Duncan, Elizabeth J.; Murali, Shwetha C.; Qu, Jiaxin; Dugan, Shannon; Lee, Sandra L.; Chao, Hsu; Dinh, Huyen; Han, Yi; Doddapaneni, Harshavardhan; Worley, Kim C.; Muzny, Donna M.; Wheeler, David; Panfilio, Kristen A.; Jentzsch, Iris M. Vargas; Vargo, Edward L.; Booth, Warren; Friedrich, Markus; Weirauch, Matthew T.; Anderson, Michelle A. E.; Jones, Jeffery W.; Mittapalli, Omprakash; Zhao, Chaoyang; Zhou, Jing-Jiang; Evans, Jay D.; Attardo, Geoffrey M.; Robertson, Hugh M.; Zdobnov, Evgeny M.; Ribeiro, Jose M. C.; Gibbs, Richard A.; Werren, John H.; Palli, Subba R.; Schal, Coby; Richards, Stephen (Nature, 2016-02-02)The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host–symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human–bed bug and symbiont–bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite
- Warm Blood Meal Increases Digestion Rate and Milk Protein Production to Maximize Reproductive Output for the Tsetse Fly, Glossina morsitansBenoit, Joshua B.; Lahondère, Chloé; Attardo, Geoffrey M.; Michalkova, Veronika; Oyen, Kennan; Xiao, Yanyu; Aksoy, Serap (MDPI, 2022-10-31)The ingestion of blood represents a significant burden that immediately increases water, oxidative, and thermal stress, but provides a significant nutrient source to generate resources necessary for the development of progeny. Thermal stress has been assumed to solely be a negative byproduct that has to be alleviated to prevent stress. Here, we examined if the short thermal bouts incurred during a warm blood meal are beneficial to reproduction. To do so, we examined the duration of pregnancy and milk gland protein expression in the tsetse fly, Glossina morsitans, that consumed a warm or cool blood meal. We noted that an optimal temperature for blood ingestion yielded a reduction in the duration of pregnancy. This decline in the duration of pregnancy is due to increased rate of blood digestion when consuming warm blood. This increased digestion likely provided more energy that leads to increased expression of transcript for milk-associated proteins. The shorter duration of pregnancy is predicted to yield an increase in population growth compared to those that consume cool or above host temperatures. These studies provide evidence that consumption of a warm blood meal is likely beneficial for specific aspects of vector biology.