Browsing by Author "Benton, Angela H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ASC-Mediated Inflammation and Pyroptosis Attenuates Brucella abortus Pathogenesis Following the Recognition of gDNATupik, Juselyn D.; Coutermarsh-Ott, Sheryl; Benton, Angela H.; King, Kellie A.; Kiryluk, Hanna D.; Caswell, Clayton C.; Allen, Irving C. (MDPI, 2020-11-30)Brucella abortus is a zoonotic pathogen that causes brucellosis. Because of Brucella’s unique LPS layer and intracellular localization predominately within macrophages, it can often evade immune detection. However, pattern recognition receptors are capable of sensing Brucella pathogen-associated molecular patterns (PAMPS). For example, NOD-like receptors (NLRs) can form a multi-protein inflammasome complex to attenuate Brucella pathogenesis. The inflammasome activates IL-1β and IL-18 to drive immune cell recruitment. Alternatively, inflammasome activation also initiates inflammatory cell death, termed pyroptosis, which augments bacteria clearance. In this report, we assess canonical and non-canonical inflammasome activation following B. abortus infection. We conducted in vivo studies using Asc−/− mice and observed decreased mouse survival, immune cell recruitment, and increased bacteria load. We also conducted studies with Caspase-11−/− mice and did not observe any significant impact on B. abortus pathogenesis. Through mechanistic studies using Asc−/− macrophages, our data suggests that the protective role of ASC may result from the induction of pyroptosis through a gasdermin D-dependent mechanism in macrophages. Additionally, we show that the recognition of Brucella is facilitated by sensing the PAMP gDNA rather than the less immunogenic LPS. Together, these results refine our understanding of the role that inflammasome activation and pyroptosis plays during brucellosis.
- Characterizing the transport and utilization of the neurotransmitter GABA in the bacterial pathogen Brucella abortusBudnick, James A.; Sheehan, Lauren M.; Benton, Angela H.; Pitzer, Joshua E.; Kang, Lin; Michalak, Pawel; Roop, R. Martin II; Caswell, Clayton C. (PLoS, 2020-08-26)The neurotransmitter gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the human brain; however, it is becoming more evident that this non-proteinogenic amino acid plays multiple physiological roles in biology. In the present study, the transport and function of GABA is studied in the highly infectious intracellular bacterium Brucella abortus. The data show that 3H-GABA is imported by B. abortus under nutrient limiting conditions and that the small RNAs AbcR1 and AbcR2 negatively regulate this transport. A specific transport system, gts, is responsible for the transport of GABA as determined by measuring 3H-GABA transport in isogenic deletion strains of known AbcR1/2 regulatory targets; however, this locus is unnecessary for Brucella infection in BALB/c mice. Similar assays revealed that 3H-GABA transport is uninhibited by the 20 standard proteinogenic amino acids, representing preference for the transport of 3H-GABA. Metabolic studies did not show any potential metabolic utilization of GABA by B. abortus as a carbon or nitrogen source, and RNA sequencing analysis revealed limited transcriptional differences between B. abortus 2308 with or without exposure to GABA. While this study provides evidence for GABA transport by B. abortus, questions remain as to why and when this transport is utilized during Brucella pathogenesis.
- A Transcriptional Activator of Ascorbic Acid Transport in Streptococcus pneumoniae Is Required for Optimal Growth in Endophthalmitis in a Strain-Dependent MannerBenton, Angela H.; Jackson, Mary Darby; Wong, Sandy M.; Dees, Justine L.; Akerley, Brian J.; Marquart, Mary E. (MDPI, 2019-08-24)Streptococcus pneumoniae is among the top causes of bacterial endophthalmitis, an infectious disease of the intraocular fluids. The mechanisms by which S. pneumoniae grows and thrives in the intraocular cavity are not well understood. We used a bacterial genome-wide assessment tool (transposon insertion site sequencing) to determine genes essential for S. pneumoniae growth in vitreous humor. The results indicated that an ascorbic acid (AA) transport system subunit was important for growth. We created an isogenic gene deletion mutant of the AA transcriptional activator, ulaR2, in 2 strains of S. pneumoniae. Growth curve analysis indicated that ulaR2 deletion caused attenuated growth in vitro for both strains. However, in vivo vitreous humor infection in rabbits with either strain determined that ulaR2 was necessary for growth in one strain but not the other. These results demonstrate that ulaR2 may be important for fitness during S. pneumoniae endophthalmitis depending on the background of the strain.