Browsing by Author "Bergeron, Christine M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Making leaps in amphibian ecotoxicology: translating individual-level effects of contaminants to population viabilityWillson, John D.; Hopkins, William A.; Bergeron, Christine M.; Todd, B. D. (Ecological Society of America, 2012-09)Concern that environmental contaminants contribute to global amphibian population declines has prompted extensive experimental investigation, but individual-level experimental results have seldom been translated to population-level processes. We used our research on the effects of mercury (He) on American toads (Bufo americanus) as a model for bridging the gap between individual-level contaminant effects and amphibian population viability. We synthesized the results of previous field and laboratory studies examining effects of Hg throughout the life cycle of B. americanus and constructed a comprehensive demographic population model to evaluate the consequences of Hg exposure on population dynamics. Our model explicitly considered density-dependent larval survival, which is known to be an important driver of amphibian population dynamics, and incorporated two important factors that have seldom been considered in previous amphibian modeling studies: environmental stochasticity and sublethal effects. We demonstrated that decreases in embryonic survival and sublethal effects (c.a., reduced body size) that delay maturation have minor effects on population dynamics, whereas contaminant effects that reduce late-larval or post-metamorphic survival have important population-level consequences. We found that excessive Hg exposure through maternal transfer or larval diet, alone, had minor effects on B. americanus populations. Simultaneous maternal and dietary exposure resulted in reduced population size and a dramatic increase in extinction probability, but explicit prediction of population-level effects was dependent on the strength of larval density dependence. Our results suggest that environmental contaminants can influence amphibian population viability, but that highly integrative approaches are needed to translate individual-level effects to populations.
- Understanding the influence of multiple pollutant stressors on the decline of freshwater mussels in a biodiversity hotspotCope, W. Gregory; Bergeron, Christine M.; Archambault, Jennifer M.; Jones, Jess W.; Beaty, Braven; Lazaro, Peter R.; Shea, Damian; Callihan, Jody L.; Rogers, Jennifer J. (2021-06-15)The Clinch River watershed of the upper Tennessee River Basin of Virginia and Tennessee, USA supports one of North America's greatest concentrations of freshwater biodiversity, including 46 extant species of native freshwater mussels (Order Unionida), 20 of which are protected as federally endangered. Despite the global biological significance of the Clinch River, mussel populations are declining in some reaches, both in species richness and abundance. The aim of this study was to evaluate the exposure of adult resident mussels to a suite of inorganic and organic contaminant stressors in distinct sections of the Clinch River that encompassed a range of mussel abundance and health. To provide insight into the potential role of pollutants in the decline of mussels, including within a previously documented "zone of mussel decline", the mainstem Clinch River (8 sites) and its tributaries (4 sites) were examined over two consecutive years. We quantified and related metals and organic contaminant concentrations in mussels to their associated habitat compartments (bed sediment, suspended particulate sediment, pore water, and surface water). We found that concentrations of organic contaminants in resident mussels, particularly the suite of 42 polycyclic aromatic hydrocarbons (PAHs) analyzed, were related to PAH concentrations in all four habitat (media) compartments. Further, PAH concentrations in mussel tissue (range 37.8-978.1 ng/g dry weight in 2012 and 194.3-1073.7 ng/g dry weight in 2013) were negatively related to the spatial pattern in mussel densities (r(s) = -0.64, p <= 0.05 in 2012 and r(s) = -0.83, p <= 0.05 in 2013) within the river, and were highest in the "zone of mussel decline". In contrast, the suite of 22 metals analyzed in resident mussels were largely unrelated to the spatial pattern of variation of metals in the four habitat compartments except for Manganese (Mn; range 3630.5-23,749.2 mu g/g dry weight in 2012 and 1540.4-12,605.8 mu g/g dry weight in 2013) in surface water (r(s) = 0.58, p < 0.1) and pore water (r(s) = 0.76, p <= 0.05). This study revealed that PAHs and Mn are important pollutant stressors to mussels in the Clinch River and that they are largely being delivered through the Guest River tributary watershed. Accordingly, future conservation and management efforts would benefit by identifying, and ideally mitigating, the sources of PAHs, Mn, and other current or legacy mining associated pollutants to the mainstem river and its tributaries. (C) 2021 Elsevier B.V. All rights reserved.