Browsing by Author "Besnard, Julien"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Arabidopsis UMAMIT24 and 25 are amino acid exporters involved in seed loadingBesnard, Julien; Zhao, Chengsong; Avice, Jean-Christophe; Vitha, Stanislav; Hyodo, Ayumi; Pilot, Guillaume; Okumoto, Sakiko (Oxford University Press, 2018-10-12)Phloem-derived amino acids are the major source of nitrogen supplied to developing seeds. Amino acid transfer from the maternal to the filial tissue requires at least one cellular export step from the maternal tissue prior to the import into the symplasmically isolated embryo. Some members of UMAMIT (usually multiple acids move in an out transporter) family (UMAMIT11, 14, 18, 28, and 29) have previously been implicated in this process. Here we show that additional members of the UMAMIT family, UMAMIT24 and UMAMIT25, also function in amino acid transfer in developing seeds. Using a recently published yeast-based assay allowing detection of amino acid secretion, we showed that UMAMIT24 and UMAMIT25 promote export of a broad range of amino acids in yeast. In plants, UMAMIT24 and UMAMIT25 are expressed in distinct tissues within developing seeds; UMAMIT24 is mainly expressed in the chalazal seed coat and localized on the tonoplast, whereas the plasma membrane-localized UMAMIT25 is expressed in endosperm cells. Seed amino acid contents of umamit24 and umamit25 knockout lines were both decreased during embryogenesis compared with the wild type, but recovered in the mature seeds without any deleterious effect on yield. The results suggest that UMAMIT24 and 25 play different roles in amino acid translocation from the maternal to filial tissue; UMAMIT24 could have a role in temporary storage of amino acids in the chalaza, while UMAMIT25 would mediate amino acid export from the endosperm, the last step before amino acids are taken up by the developing embryo.
- Increased Expression of UMAMIT Amino Acid Transporters Results in Activation of Salicylic Acid Dependent Stress ResponseBesnard, Julien; Sonawala, Unnati; Maharjan, Bal; Collakova, Eva; Finlayson, Scott A.; Pilot, Guillaume; McDowell, John M.; Okumoto, Sakiko (2021-01-26)In addition to their role in the biosynthesis of important molecules such as proteins and specialized metabolites, amino acids are known to function as signaling molecules through various pathways to report nitrogen status and trigger appropriate metabolic and cellular responses. Moreover, changes in amino acid levels through altered amino acid transporter activities trigger plant immune responses. Specifically, loss of function of major amino acid transporter, over-expression of cationic amino acid transporter, or over-expression of the positive regulators of membrane amino acid export all lead to dwarfed phenotypes and upregulated salicylic acid (SA)-induced stress marker genes. However, whether increasing amino acid exporter protein levels lead to similar stress phenotypes has not been investigated so far. Recently, a family of transporters, namely USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTERS (UMAMITs), were identified as amino acid exporters. The goal of this study was to investigate the effects of increased amino acid export on plant development, growth, and reproduction to further examine the link between amino acid transport and stress responses. The results presented here show strong evidence that an increased expression of UMAMIT transporters induces stress phenotypes and pathogen resistance, likely due to the establishment of a constitutive stress response via a SA-dependent pathway.