Browsing by Author "Bhatti, Bilal Ahmad"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Analyzing Impact of Distributed PV Generation on Integrated Transmission & Distribution System Voltage Stability — A Graph Trace Analysis Based ApproachBhatti, Bilal Ahmad; Broadwater, Robert; Dilek, Murat (MDPI, 2020-09-01)The use of a Graph Trace Analysis (GTA)-based power flow for analyzing the voltage stability of integrated Transmission and Distribution (T&D) networks is discussed in the context of distributed Photovoltaic (PV) generation. The voltage stability of lines and the load carrying capability of buses is analyzed at various PV penetration levels. It is shown that as the PV generation levels increase, an increase in the steady state voltage stability of the system is observed. Moreover, within certain regions of stability margin changes, changes in voltage stability margins of transmission lines are shown to be linearly related to changes in the loading of the lines. Two case studies are presented, where one case study involves a model with eight voltage levels and 784,000 nodes. In one case study, a voltage-stability heat map is used to demonstrate the identification of weak lines and buses.
- A Game Theoretic-based Transactive Energy Framework for Distributed Energy ResourcesBhatti, Bilal Ahmad (Virginia Tech, 2021-01-07)Power systems have evolved significantly during the last two decades with the advent of Distributed Energy Resources (DERs) like solar PV. Traditionally, large power plants were considered as the sole source of energy in the power systems. However, DERs connected to the transmission and the distribution systems are creating a paradigm shift from a centralized generation to a distributed one. Though the variable power output from these DERs poses challenges to the reliable operation of the grid, it also presents opportunities to design control and coordination approaches to improve system efficiency and operational reliability. Moreover, building new transmission lines to meet ever-increasing load demand is not always viable. Thus, the industry is leaning towards developing non-wires alternatives. Considering the existing limitations of the transmission system, line congestions, and logistic/economic constraints associated with its capacity expansion, leveraging DERs to supply distribution system loads is attractive and thus capturing the attention of researchers and the electric power industry. The primary objective of this dissertation is to develop a framework that enables DERs to supply local area load by co-simulating the power system and transactive system representations of the network. To realize this objective, a novel distributed optimization and game theory-based network representation is developed that optimally computes the power output of the Home Microgrids/DER aggregators. Moreover, the optimum operational schedules of the DERs within these Home Microgrids/DER aggregators are also computed. The novel electrical-transactive co-simulation ensures that the solution is optimum in the context of power systems i.e. power flow constraints are not violated while the payoffs are maximized for the Home Microgrids/DER aggregators. The transactive mechanism involves two-way iterative signaling. The signaling is modeled as an infinite strategy, multiplayer, non-cooperative game, and a novel theory is developed for the game model. The dissertation also introduces a novel concept of ranking the Home Microgrids/DER aggregators according to their historic performance, thus leading to fairness, higher participation, and transparency. Significant advantages offered by the framework include consumption of local generation, transmission upgrade deferral, mitigation of line congestions in peak periods, and reduced transmission systems losses.
- Integrated Transmission-and-Distribution System Modeling of Power Systems: State-of-the-Art and Future Research DirectionsJain, Himanshu; Bhatti, Bilal Ahmad; Wu, Tianying; Mather, Barry; Broadwater, Robert (MDPI, 2020-12-22)Integrated transmission-and-distribution (T&D) modeling is a new and developing method for simulating power systems. Interest in integrated T&D modeling is driven by the changes taking place in power systems worldwide that are resulting in more decentralized power systems with increasingly high levels of distributed energy resources. Additionally, the increasing role of the hitherto passive energy consumer in the management and operation of power systems requires more capable and detailed integrated T&D modeling to understand the interactions between T&D systems. Although integrated T&D modeling has not yet found widespread commercial application, its potential for changing the decades-old power system modeling approaches has led to several research efforts in the last few years that tried to (i) develop algorithms and software for steady-state and dynamic modeling of power systems and (ii) demonstrate the advantages of this modeling approach compared with traditional, separated T&D system modeling. In this paper, we provide a review of integrated T&D modeling research efforts and the methods employed for steady-state and dynamic modeling of power systems. We also discuss our current research in integrated T&D modeling and the potential directions for future research. This paper should be useful for power systems researchers and industry members because it will provide them with a critical summary of current research efforts and the potential topics where research efforts are needed to further advance and demonstrate the utility of integrated T&D modeling.