Browsing by Author "Bhide, Shantanu Vidyadhar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The Effects of Basin Slope and Boundary Friction on the Character and Plunge Location of Hyperpycnal Flows Entering a Laterally Unbounded BasinBhide, Shantanu Vidyadhar (Virginia Tech, 2019-06-19)This thesis focuses on the behaviour of hyperpycnal plumes in river mouth discharges. The plunging of high density flows in two dimensional channels has been extensively studied before. A fundamental assumption in these studies is that the flow is laterally confined. These studies allow the flow to plunge only in two directions, the horizontal x-direction and the vertical z-direction. The goal of this study is to determine if there is observable plunging of hyperpycnal flows in the lateral y-direction, i.e. lateral spreading, in a three dimensional domain and to find out the parameters influencing the lateral spread. Previous studies conducted in laterally confined channels suggest that hyperpycnal flows plunge when the flow reaches a densimetric Froude number of unity. This study attempts to find the densimetric Froude number at hyperpycnal plunging in a three dimensional domain and if it is influenced by the factors that also influence the spread. This study also analyzes whether the cross-shore location for plunging changes when lateral spreading is accounted for, relative to a two dimensional analysis and if the plunging is limited to flow reaching a certain depth. This was accomplished through a series of experimental simulations on a hypothetical river mouth domain using Delft-3D, a hydrodynamic modeling software. Three parameters viz. the bottom slope of the receiving basin, the bottom friction and the density difference between inflow and ambient liquid were varied to test their influence on the plume spread rate.
- Unveiling Causal Links, Temporal Patterns, and System-Level Dynamics of Freshwater Salinization Using Transit Time Distribution TheoryBhide, Shantanu Vidyadhar (Virginia Tech, 2023-10-18)Inland freshwater salinity is rising worldwide and threatens the quality of our water resources, a phenomenon called the freshwater salinization syndrome (FSS). Simultaneously, the practice of indirect potable reuse (IPR) that augments critical water supplies with treated wastewater to enhance water security presents complexities in water quality management. This dissertation explores the complex interplay between FSS and IPR in the Occoquan Reservoir, an important drinking-water source in the Mid-Atlantic United States, within its diverse environmental, social and political contexts. Using extensive data collected over 25 years, this research quantifies contributions of multiple salinity sources to the rising concentration of sodium (a major ion associated with the FSS) in the reservoir and the finished drinking water. These sources encompass two rapidly urbanizing watersheds, a sophisticated water reclamation facility and the drinking water treatment utility. The novel application of unsteady transit time theory reveals that stream salinization can be linked to watershed salt sources using stream water age as a master variable and provides a real-time prediction model for sodium concentration in the reservoir. These results identify substantial opportunities to mitigate sodium pollution and help set the stage for stakeholder-driven bottom-up management by improving the predictability of system dynamics, enhancing knowledge of this social-ecological system and supporting the development of collective action rules.