Browsing by Author "Biggerstaff, Matthew"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Collaborative efforts to forecast seasonal influenza in the United States, 2015–2016McGowan, Craig J.; Biggerstaff, Matthew; Johansson, Michael; Apfeldorf, Karyn M.; Ben-Nun, Michal; Brooks, Logan; Convertino, Matteo; Erraguntla, Madhav; Farrow, David C.; Freeze, John; Ghosh, Saurav; Hyun, Sangwon; Kandula, Sasikiran; Lega, Joceline; Liu, Yang; Michaud, Nicholas; Morita, Haruka; Niemi, Jarad; Ramakrishnan, Naren; Ray, Evan L.; Reich, Nicholas G.; Riley, Pete; Shaman, Jeffrey; Tibshirani, Ryan; Vespignani, Alessandro; Zhang, Qian; Reed, Carrie; Rosenfeld, Roni; Ulloa, Nehemias; Will, Katie; Turtle, James; Bacon, David; Riley, Steven; Yang, Wan; The Influenza Forecasting Working Group (Nature Publishing Group, 2019-01-24)Since 2013, the Centers for Disease Control and Prevention (CDC) has hosted an annual influenza season forecasting challenge. The 2015–2016 challenge consisted of weekly probabilistic forecasts of multiple targets, including fourteen models submitted by eleven teams. Forecast skill was evaluated using a modified logarithmic score. We averaged submitted forecasts into a mean ensemble model and compared them against predictions based on historical trends. Forecast skill was highest for seasonal peak intensity and short-term forecasts, while forecast skill for timing of season onset and peak week was generally low. Higher forecast skill was associated with team participation in previous influenza forecasting challenges and utilization of ensemble forecasting techniques. The mean ensemble consistently performed well and outperformed historical trend predictions. CDC and contributing teams will continue to advance influenza forecasting and work to improve the accuracy and reliability of forecasts to facilitate increased incorporation into public health response efforts. © 2019, The Author(s).
- Forecasting influenza activity using machine-learned mobility mapVenkatramanan, Srinivasan; Sadilek, Adam; Fadikar, Arindam; Barrett, Christopher L.; Biggerstaff, Matthew; Chen, Jiangzhuo; Dotiwalla, Xerxes; Eastham, Paul; Gipson, Bryant; Higdon, Dave; Kucuktunc, Onur; Lieber, Allison; Lewis, Bryan L.; Reynolds, Zane; Vullikanti, Anil Kumar S.; Wang, Lijing; Marathe, Madhav V. (2021-02-09)Human mobility is a primary driver of infectious disease spread. However, existing data is limited in availability, coverage, granularity, and timeliness. Data-driven forecasts of disease dynamics are crucial for decision-making by health officials and private citizens alike. In this work, we focus on a machine-learned anonymized mobility map (hereon referred to as AMM) aggregated over hundreds of millions of smartphones and evaluate its utility in forecasting epidemics. We factor AMM into a metapopulation model to retrospectively forecast influenza in the USA and Australia. We show that the AMM model performs on-par with those based on commuter surveys, which are sparsely available and expensive. We also compare it with gravity and radiation based models of mobility, and find that the radiation model's performance is quite similar to AMM and commuter flows. Additionally, we demonstrate our model's ability to predict disease spread even across state boundaries. Our work contributes towards developing timely infectious disease forecasting at a global scale using human mobility datasets expanding their applications in the area of infectious disease epidemiology. Human mobility plays a central role in the spread of infectious diseases and can help in forecasting incidence. Here the authors show a comparison of multiple mobility benchmarks in forecasting influenza, and demonstrate the value of a machine-learned mobility map with global coverage at multiple spatial scales.
- An open challenge to advance probabilistic forecasting for dengue epidemicsJohansson, Michael A.; Apfeldorf, Karyn M.; Dobson, Scott; Devita, Jason; Buczak, Anna L.; Baugher, Benjamin; Moniz, Linda J.; Bagley, Thomas; Babin, Steven M.; Guven, Erhan; Yamana, Teresa K.; Shaman, Jeffrey; Moschou, Terry; Lothian, Nick; Lane, Aaron; Osborne, Grant; Jiang, Gao; Brooks, Logan C.; Farrow, David C.; Hyun, Sangwon; Tibshirani, Ryan J.; Rosenfeld, Roni; Lessler, Justin; Reich, Nicholas G.; Cummings, Derek AT T.; Lauer, Stephen A.; Moore, Sean M.; Clapham, Hannah E.; Lowe, Rachel; Bailey, Trevor C.; Garcia-Diez, Markel; Carvalho, Marilia Sa; Rodo, Xavier; Sardar, Tridip; Paul, Richard; Ray, Evan L.; Sakrejda, Krzysztof; Brown, Alexandria C.; Meng, Xi; Osoba, Osonde; Vardavas, Raffaele; Manheim, David; Moore, Melinda; Rao, Dhananjai M.; Porco, Travis C.; Ackley, Sarah; Liu, Fengchen; Worden, Lee; Convertino, Matteo; Liu, Yang; Reddy, Abraham; Ortiz, Eloy; Rivero, Jorge; Brito, Humberto; Juarrero, Alicia; Johnson, Leah R.; Gramacy, Robert B.; Cohen, Jeremy M.; Mordecai, Erin A.; Murdock, Courtney C.; Rohr, Jason R.; Ryan, Sadie J.; Stewart-Ibarra, Anna M.; Weikel, Daniel P.; Jutla, Antarpreet; Khan, Rakibul; Poultney, Marissa; Colwell, Rita R.; Rivera-Garcia, Brenda; Barker, Christopher M.; Bell, Jesse E.; Biggerstaff, Matthew; Swerdlow, David; Mier-y-Teran-Romero, Luis; Forshey, Brett M.; Trtanj, Juli; Asher, Jason; Clay, Matt; Margolis, Harold S.; Hebbeler, Andrew M.; George, Dylan; Chretien, Jean-Paul (National Academy of Sciences, 2019-11-26)A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico. Forecast skill was highly variable across teams and targets. While numerous forecasts showed high skill for midseason situational awareness, early season skill was low, and skill was generally lowest for high incidence seasons, those for which forecasts would be most valuable. A comparison of modeling approaches revealed that average forecast skill was lower for models including biologically meaningful data and mechanisms and that both multimodel and multiteam ensemble forecasts consistently outperformed individual model forecasts. Leveraging these insights, data, and the forecasting framework will be critical to improve forecast skill and the application of forecasts in real time for epidemic preparedness and response. Moreover, key components of this project-integration with public health needs, a common forecasting framework, shared and standardized data, and open participation-can help advance infectious disease forecasting beyond dengue.