Browsing by Author "Bishop, Colin E."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Fusion of bovine fibroblasts to mouse embryonic stem cells: a model to study nuclear reprogrammingVillafranca Locher, Maria Cristina (Virginia Tech, 2018-04-20)The cells from the inner cell mass (ICM) of an early embryo have the potential to differentiate into all the different cell types present in an adult organism. Cells from the ICM can be isolated and cultured in vitro, becoming embryonic stem cells (ESCs). ESCs have several properties that make them unique: they are unspecialized, can self-renew indefinitely in culture, and given the appropriate cues can differentiate into cells from all three germ layers (ecto-, meso-, and endoderm), including the germline, both in vivo and in vitro. Induced pluripotent stem cells (iPSCs) can be generated from adult, terminally differentiated somatic cells by transient exogenous expression of four transcription factors (Oct4, Sox2, Klf4, and cMyc; OSKM) present normally in ESCs. It has been shown that iPSCs are equivalent to ESCs in terms of morphology, gene expression, epigenetic signatures, in vitro proliferation capacity, and in vitro and in vivo differentiation potential. However, unlike ESCs, iPSCs can be obtained from a specific individual without the need for embryos. This makes them a promising source of pluripotent cells for regenerative medicine, tissue engineering, drug discovery, and disease modelling; additionally, in livestock species such as the bovine, they also have applications in genetic selection, production of transgenic animals for agricultural and biomedical purposes, and species conservancy. Nevertheless, ESC and iPSC lines that meet all pluripotency criteria have, to date, only been successfully produced in mice, rats, humans, and non-human primates. In the first part of this dissertation, we attempted reprogramming of three types of bovine somatic cells: fetal fibroblasts (bFFs), adult fibroblasts (bAFs), and bone marrow-derived mesenchymal stem cells (bMSCs), using six different culture conditions adapted from recent work in mice and humans. Using basic mouse reprogramming conditions, we did not succeed in inducing formation of ESC-like colonies in bovine somatic cells. The combination of 2i/LIF plus ALK5 inhibitor II and ascorbic acid, induced formation of colony-like structures with flat morphology, that occasionally produced trophoblast-like structures. These trophoblast-like vesicles did not appear when an inhibitor of Rho-associated, coiled-coil containing protein kinase 1 (ROCK) was included in the medium. We screened for expression of exogenous OSKM vector with RT-PCR and found upregulation of OSKM vector 24h after Dox was added to the medium; however, expression was sharply decreased on day 2 after Dox induction, and was not detectable after day 3. In a separate experiment, we induced reprogramming of bFF and bAFs using medium supplemented with 50% of medium conditioned by co-culture with the bovine trophoblast CT1 line. These cells expressed both OCT4 and the OSKM vector 24h after Dox induction. However, similar to our previous observations, both markers decreased expression until no signal was detected after day 3. In summary, we were unable to produce fully reprogrammed bovine iPSCs using mouse and human protocols, and the exact cause of our lack of success is unclear. It is possible that a different method of transgene expression could play a role in reprogramming. However, these ideas would be driven by a rather empirical reasoning, extrapolating findings from other species, and not contributing in our understanding of the particular differences of pluripotecy in ungulates. Our inability to produce bovine iPSCs, combined with the only partial reprogramming observed by others, justifies the need for in depth study of bovine pluripotency mechanisms, before meaningful attempts to reprogram bovine somatic cells to plutipotency are made. Therefore, we focused on getting a better understanding of bovine nuclear reprogramming. This would allow us to rationally target the specific requirements of potential bovine pluripotent cells. Cell fusion is a process that involves fusion of the membrane of two or more cells to form a multinucleated cell. Fusion of a somatic cell to an ESC is known to induce expression of pluripotency markers in the somatic nucleus. In the second part of this dissertation, we hypothesized that fusion of bFFs to mouse ESCs (mESCs) would induce expression of pluripotency markers in the bFF nucleus. We first optimized a cell fusion protocol based on the use of polyethylene glycol (PEG), and obtained up to 11.02% of multinucleated cells in bFFs. Next, we established a method to specifically select for multinucleated cells originated from the fusion of mESCs with bFFs (heterokaryons), using indirect immunofluorescence. With this in place, flow cytometry was used to select 200 heterokaryons which were further analyzed using RNA-seq. We found changes in bovine gene expression patterns between bFFs and heterokaryons obtained 24h after fusion. Focusing on the bovine transcriptome, heterokaryons presented upregulation of early pluripotency markers OCT4 and KLF4, as well as hypoxia response genes, contrasted with downregulation of cell cycle inhibitors such as SST. The cytokine IL6, known to increase survival of early embryos in vitro, was upregulated in heterokaryons, although its role and mechanism of action is still unclear. This indicates that the heterokaryon cell fusion model recapitulates several of the events of early reprogramming, and can therefore be used for further study of pluripotency in the bovine. The cell fusion model presented here can be used as a tool to characterize early changes in bovine somatic nuclear reprogramming, and to study the effect of different reprogramming conditions on the bovine transcriptome.
- In Vitro Models of Cellular Dedifferentiation for Regenerative MedicineWilliams, Kaylyn Renee (Virginia Tech, 2018-06-22)Stem cells have the ability to self-renew and to differentiate into a variety of cell types. Stem cells can be found naturally in the body, can be derived from the inner cell mass of blastocysts, or can be made by dedifferentiation of adult cells. Regenerative medicine aims to utilize the potential of stem cells to treat disease and injury. The ability to create stem cell lines from a patient's own tissues allows for transplantation without immunosuppressive therapy as well as patient-specific disease modeling and drug testing. The objective of this study was to use cellular dedifferentiation to create in vitro cell lines with which to study regenerative medicine. First, we used siRNA targeted against myogenin to induce the dedifferentiation of murine C2C12 myotubes into myoblasts. Timelapse photography, immunofluorescence, and western blot analysis support successful dedifferentiation into myoblasts. However, the inability to separate the myotubes and myoblasts prior to siRNA treatment confounded the results. This system has the potential to be used to study mechanisms behind muscle cell regeneration and wound healing, but a better method for separating out the myoblasts needs to be developed before this will be achievable. Second, we used a doxycycline-inducible lentiviral vector encoding the transcription factors Oct4, Sox2, cMyc, and Klf4 to create a line of naive-like porcine induced pluripotent stem cells (iPSCs). This reprogramming vector was verified first in murine cells, the system in which it was developed. Successful production of both murine and porcine iPSC lines was achieved. Both showed alkaline phosphatase activity, immunofluorescence for pluripotency marker (Oct4, Sox2, and Nanog) expression, PCR for upregulation of endogenous pluripotency factors (Oct4, Sox2, cMyc, Klf4, and Nanog), and the ability to form embryoid bodies that expressed markers of all three germ layers. Additionally, we were able to create secondary porcine iPSC lines by exposing cellular outgrowths from embryoid bodies to doxycycline to initiate more efficient production of porcine iPSCs. The secondary porcine iPSCs were similar to the primary porcine iPSCs in their morphology, behavior, alkaline phosphatase expression, and Nanog expression with immunofluorescence. The porcine iPSCs were dependent on doxycycline to maintain pluripotency, indicating that they are not fully reprogrammed. Despite this dependence on doxycyline, this system can be used in the future to study the process of reprogramming, to develop directed differentiation protocols, and to model diseases.
- Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platformSkardal, Aleksander; Murphy, Sean V.; Devarasetty, Mahesh; Mead, Ivy; Kang, Hyun-Wook; Seol, Young-Joon; Zhang, Yu Shrike; Shin, Su-Ryon; Zhao, Liang; Aleman, Julio; Hall, Adam R.; Shupe, Thomas D.; Kleensang, Andre; Dokmeci, Mehmet R.; Lee, Sang Jin; Jackson, John D.; Yoo, James J.; Hartung, Thomas; Khademhosseini, Ali; Soker, Shay; Bishop, Colin E.; Atala, Anthony (Springer Nature, 2017-08-18)Many drugs have progressed through preclinical and clinical trials and have been available - for years in some cases -before being recalled by the FDA for unanticipated toxicity in humans. One reason for such poor translation from drug candidate to successful use is a lack of model systems that accurately recapitulate normal tissue function of human organs and their response to drug compounds. Moreover, tissues in the body do not exist in isolation, but reside in a highly integrated and dynamically interactive environment, in which actions in one tissue can affect other downstream tissues. Few engineered model systems, including the growing variety of organoid and organ-on-a-chip platforms, have so far reflected the interactive nature of the human body. To address this challenge, we have developed an assortment of bioengineered tissue organoids and tissue constructs that are integrated in a closed circulatory perfusion system, facilitating inter-organ responses. We describe a three-tissue organ-on-a-chip system, comprised of liver, heart, and lung, and highlight examples of inter-organ responses to drug administration. We observe drug responses that depend on inter-tissue interaction, illustrating the value of multiple tissue integration for in vitro study of both the efficacy of and side effects associated with candidate drugs.
- TALEN-Mediated Modification of the Bovine Genome for Large-Scale Production of Human Serum AlbuminMoghaddassi, Shaida; Eyestone, Will; Bishop, Colin E. (PLOS, 2014-02-21)As an initial step towards creating genetically modified cattle as a biopharming source of recombinant human serum albumin (rHSA), we report modification of the bovine albumin (bA) locus by transcription activator-like effector nuclease (TALEN)-stimulated homology-directed repair (HDR). Pedigreed bovine fibroblasts were co-transfected with TALENs and an 11.5-kb human serum albumin (HSA) minigene donor construct, designed to simultaneously disrupt and replace bovine serum albumin (BSA) expression with controlled rHSA expression in both the liver and the milk. Targeted integration of the HSA minigene was confirmed in transfected fibroblasts at a frequency of approximately 11% and transgenic bovine embryos were produced from targeted fibroblasts using somatic cell nuclear transfer (SCNT). The research delineated here lays the foundation for the future generation of transgenic rHSA cattle with the potential to provide a large-scale, reliable, and quality-controlled source of rHSA.