Browsing by Author "Brandon, Madison"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ADAM: Analysis of Discrete Models of Biological Systems Using Computer AlgebraHinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard C. (2011-07-20)Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.
- Iron acquisition and oxidative stress response in aspergillus fumigatusBrandon, Madison; Howard, Brad; Lawrence, Christopher B.; Laubenbacher, Reinhard C. (BMC, 2015)Background: Aspergillus fumigatus is a ubiquitous airborne fungal pathogen that presents a life-threatening health risk to individuals with weakened immune systems. A. fumigatus pathogenicity depends on its ability to acquire iron from the host and to resist host-generated oxidative stress. Gaining a deeper understanding of the molecular mechanisms governing A. fumigatus iron acquisition and oxidative stress response may ultimately help to improve the diagnosis and treatment of invasive aspergillus infections. Results: This study follows a systems biology approach to investigate how adaptive behaviors emerge from molecular interactions underlying A. fumigatus iron regulation and oxidative stress response. We construct a Boolean network model from known interactions and simulate how changes in environmental iron and superoxide levels affect network dynamics. We propose rules for linking long term model behavior to qualitative estimates of cell growth and cell death. These rules are used to predict phenotypes of gene deletion strains. The model is validated on the basis of its ability to reproduce literature data not used in model generation. Conclusions: The model reproduces gene expression patterns in experimental time course data when A. fumigatus is switched from a low iron to a high iron environment. In addition, the model is able to accurately represent the phenotypes of many knockout strains under varying iron and superoxide conditions. Model simulations support the hypothesis that intracellular iron regulates A. fumigatus transcription factors, SreA and HapX, by a post-translational, rather than transcriptional, mechanism. Finally, the model predicts that blocking siderophore-mediated iron uptake reduces resistance to oxidative stress. This indicates that combined targeting of siderophore-mediated iron uptake and the oxidative stress response network may act synergistically to increase fungal cell killing.