Browsing by Author "Brann, Daniel E."
Now showing 1 - 20 of 31
Results Per Page
Sort Options
- Agricultural plant pest control : a training program for the certification of pesticide applicatorsAllen, William A.; Brann, Daniel E.; Chappell, William E.; Drake, Charles R.; McPherson, Robert M.; Martin, J. M.; Roberts, James E.; Smith, Ellen S. (Virginia Polytechnic Institute and State University. Extension Division, 1979)
- Barley silage harvested at boot and soft dough stages for lactating cowsAcosta, Yamandu Martin (Virginia Tech, 1989-04-05)Barley (Hordeum vulgare, L.) harvested at boot (5/7/88) and soft dough (6/6/88) stages of maturity was ensiled for nutritive comparisons. Boot stage was wilted and soft dough was direct cut at 15 (SD-Lo) and 25 cm (SD-Hi) above ground. Yields (kg DM/ha) were 3690, 8750 and 6287 for boot, SD-Lo and SD-Hi respectively. Digestibilities (%) of DM, CP and ADF were 74.7, 74.5 and 70.8 for boot; 61.9, 50.4 and 44.7 for SD-Lo; and 62.3, 47.2 and 49.7 for SD-Hi, respectively. Calculated TDN was 71.2, 62.0 and 62.8 for boot, SD-Lo and SD-Hi, respectively. Thirty-six lactating Holstein cows were fed boot silage at 75 and 60% of diet DM, SD-Lo fed at 75 and 60 and SD-Hi fed at 75 and 60, respectively. Milk yields (kg/d) were greatest for high concentrate diets and averaged 25.7, 28.3, 24.8, 26.3, 25.7 and 26.9, respectively. There were no differences among diets for DM intake or 4% FCM. Boot silage had a greater In Situ rumen degradability of DM, CP, ADF and NDF (68.6, 89.3, 44.2 and 45.1% respectively) than SD-Lo (57.8, 76.9, 20.9 and 24.2%) and SD-Hi (62.5, 80.0, 22.8 and 26.4%). Predictability of ruminal degradability of complete diets from weighted averages of single ingredients determined separately was low. In Situ incubation of single ingredients resulted in underestimation of DM and overestimation of CP degradability compared with complete diet incubation.
- Boron chemistry in selected Virginia soils and hydroxy aluminum and iron systemsJin, Ji-yun (Virginia Polytechnic Institute and State University, 1985)Greenhouse and laboratory experiments were conducted to investigate the distribution of native B, the availability of native and applied B in 14 Virginia soils and the specific reactions of B in soil and hydroxy Al and Fe systems. Total B in the 14 soils ranged from 21.5 to 96.3 mg kg⁻¹. Only a small portion of the total B was in soil solution, non-specifically and specifically adsorbed forms and Mn minerals. These fractions of B are readily available to plants. A large part of the total B was associated with non-crystalline and crystalline Al and Fe minerals and soil silicates. These forms of B contribute little to B absorption by plants. Hot water soluble B, NH₄-acetate extractable B, mannitol exchangeable B and Mehlich III extractable B from the soils closely correlated with the concentrations in corn plants from native B in the greenhouse experiment. A yield response of corn plants to B application did not occur on the soils. Both tissue B concentration from applied B and maximum B adsorption by the soils closely correlated with soil clay, hydroxylamine hydrochloride extractable Mn and NH₄—oxalate (pH 3.25) extractable Al and Fe (under UV light). These data indicated that soil clay and Al-, Fe- and Mn-oxides and hydroxides have high affinities to adsorb B in plant unavailable forms. Boron adsorption on both gibbsite and goethite was pH and temperature dependent. At pH 6.5, boric acid was major species in the system and B was absorbed by the negatively charged surface of gibbsite and the positively charged surface of goethite. At pH 10, borate was primarily species in the system and B was adsorbed on negatively charged surfaces of both minerals. Boron adsorption was greater at pH 10 than at pH 6.5. An increase in temperature increased B adsorption on both minerals at both pH levels. This indicated that the B adsorption was an exothermic process. Boron adsorption on gibbsite and goethite shifted the ZPC of the minerals downward. This verified that specific B adsorption occurred on the surfaces. Aluminum substitution in goethite increased the affinity of the surface for B adsorption.
- Characterization of Acetolactate Synthase-Inhibiting Herbicide-Resistant Smooth Pigweed and Corn Weed Management Programs Utilizing Mesotrione in Combinations with Other HerbicidesWhaley, Cory Miller (Virginia Tech, 2005-03-01)Repeated use of acetolactate synthase (ALS)-inhibiting herbicides in recent years has resulted in the selection of 89 weed species resistant to these herbicides. One management strategy that can eliminate or slow the development of resistance is applying mixtures of herbicides with different modes of action. This research involved the characterization of ALS-inhibiting herbicide-resistant smooth pigweed (Amaranthus hybridus L.), as well as investigations on weed management programs in corn (Zea mays L.) utilizing mesotrione, a triketone, in mixtures with other herbicides. ALS-inhibiting herbicide-resistant smooth pigweed biotypes were collected from fields in Virginia, Delaware, Maryland, and Pennsylvania to evaluate response to ALS-inhibiting herbicides and to determine the molecular mechanisms of resistance. Sequencing of the ALS genes from these biotypes revealed two amino acid substitutions known to confer resistance, Ala122 to Thr and Ser653 to Asn, and one that has not been previously reported in plants, Asp376 to Glu. The smooth pigweed biotype with an Asp376 substitution displayed resistance to four classes of ALS-inhibiting herbicides that included imidazolinone (IMI), sulfonylurea (SU), pyrimidinylthiobenzoate (PTB), and triazolopyrimidine sulfonanilide (TP) chemistries. Transformation of this smooth pigweed ALS gene into Arabidopsis thaliana confirmed that the Asp376 substitution is responsible for the resistance. Other biotypes that had a substitution at Ala122 exhibited resistance to an IMI herbicide, little to no resistance to SU herbicides, and increased sensitivity to a PTB and a TP herbicide, whereas, biotypes that had a substitution at Ser653 exhibited high-level resistance to an IMI herbicide and lower resistance to PTB and SU herbicides. Experiments were also conducted to investigate the effectiveness of mesotrione in preemergence (PRE) and postemergence (POST) corn weed management programs in Virginia. Mesotrione applied PRE in mixtures with S-metolachlor and atrazine controlled common lambsquarters (Chenopodium album L.), smooth pigweed, common ragweed (Ambrosia artemisiifolia L.), and morningglory (Ipomoea spp.) species when a timely rainfall followed application. POST applications of mesotrione controlled common lambsquarters and smooth pigweed, but common ragweed and morningglory species were not always controlled. Common ragweed and morningglory species were controlled by mesotrione in a mixture with atrazine POST. Large crabgrass [Digitaria sanguinalis (L.) Scop.] and giant foxtail (Setaria faberi Herrm.) control was generally better when the ALS-inhibiting herbicides nicosulfuron plus rimsulfuron or rimsulfuron plus thifensulfuron plus atrazine were applied in a mixture with mesotrione. Mixtures of mesotrione with other POST herbicides in a total POST program produced corn yields comparable to standard PRE followed by POST weed management programs.
- Characterization of the Mechanism of Resistance of a Johnsongrass (Sorghum halepense) Biotype to Selected Graminicides in Virginia and Response of Mugwort (Artemisia vulgaris) to Specific Herbicidal and Cultural Control StrategiesBradley, Kevin Wayne (Virginia Tech, 2000-04-26)Johnsongrass [Sorghum halepense (L.) Pers.] and mugwort (Artemisia vulgaris L.) are both rhizomatous perennial weeds that are capable of rapidly colonizing a variety of different environments. Separate experiments were conducted throughout Virginia from 1996 to 1999 to determine more effective methods for reducing infestations of these perennial weeds in the future. Field and greenhouse experiments conducted on a resistant johnsongrass population discovered in New Kent County, Virginia revealed that this biotype exhibits low levels of resistance to the aryloxyphenoxypropionate (APP) herbicides quizalofop-P and fluazifop-P and the cyclohexanedione (CHD) herbicide sethoxydim. Additional laboratory experiments revealed that resistance is not due to differential absorption, translocation, or metabolism of the APP and CHD herbicides in the resistant vs. the susceptible biotype. However, acetyl-coenzyme A carboxylase (ACCase) assays revealed that resistance to the APP and CHD herbicides is conferred by an overproduction of the ACCase enzyme in the resistant compared to the susceptible johnsongrass biotype. In field experiments conducted on mugwort infestations discovered in several counties throughout Virginia, 100% mugwort control was achieved with standard application rates of picloram at 4 months after treatment (MAT), and also greater than 70% mugwort control was achieved with the higher application rates of clopyralid, glyphosate, and dicamba at 4 MAT. However, all other herbicides evaluated in these experiments provided less than 65% mugwort control at 4 MAT, even at exceptionally high use rates. Additionally, the results from these trials revealed that sequential herbicide applications and sequential mowings prior to herbicide application are both effective mugwort control strategies.
- Combining ability, protein, heterosis, and prediction of F₁ performance with RFLPs in a diallel of maizeBall, Dale Warren (Virginia Tech, 1994-07-06)Improving protein quality and identifying superior inbreds and hybrids are significant challenges in commercial maize breeding programs. These two problems were addressed in separate studies on inbreds and hybrids from a complete diallel cross of 12 elite proprietary inbred lines of maize evaluated in field trials in two locations for two years. One of the inbreds (WI) was a novel source of high quality protein obtained from Wilson Seeds, Inc. in Harlan, Iowa. In the first study, diallel analyses were used to study combining ability and types of gene action important in the inheritance of protein content, grain yield, grain moisture at harvest, time to silk, kernel hardness, and density. General combining ability (GCA) and specific combining ability (SCA) effects were highly significant for all traits indicating presence of both additive and non-additive effects, respectively. Reciprocal effects (REe), often assumed to be absent in maize diallel studies, were significant for grain yield and protein concentration, suggesting that choice of female parent may be important for these traits. Ratios expressing the relative importance of GCA and SCA indicated that protein concentration is controlled primarily by additive gene action. In the second study, restriction fragment length polymorphism (RFLP) data were obtained for the 12 inbreds using 42 genomic clones each with four restriction enzymes. Modified Roger's distances were calculated and used in cluster analyses for heterotic grouping of the inbreds. Two measures of level of heterozygosity and hybrid value were evaluated as means of predicting Fl performance of hybrids in the complete diallel set of hybrids and in groups of hybrids representing crosses between and within heterotic groups. Results from this study confirm those of previous investigations with respect to prediction of hybrid performance when comparable groupings of crosses between related and unrelated lines were evaluated. This study further indicates that RFLPs may also be useful for prediction of hybrid performance in situations typical of early generations of many maize breeding programs where recombinant inbreds are testcrossed to a common tester inbred.
- Determination and Manipulation of Leaf Area Index to Facilitate Site-Specific Management of Double-Crop Soybean in the Mid-Atlantic, U.S.A.Jones, Brian Paul (Virginia Tech, 2002-02-15)Double cropping soybean after small grain harvest does not always allow sufficient canopy growth to maximize photosynthesis and seed yield. This is due to a shorter growing season and moisture deficits common to the Mid-Atlantic USA. Leaf area index (LAI) is the ratio of unit leaf area of a crop to unit ground area and is a reliable indicator of leaf area development and crop biomass. An LAI of 3.5 to 4.0 by flowering is required to maximize yield potential. Soybean LAI will vary within and between fields due to soil differences, cultivar selection, and other cultural practices. Site-specific management strategies such as varying plant population may be used to manipulate LAI and increase yield in leaf area-limited systems. Furthermore, methods to remotely sense leaf area are in order to facilitate such management strategies in large fields. The objectives of this research were to: i) determine the effect of plant population density on soybean LAI and yield; ii) determine the relationship between LAI measured at different reproductive stages and yield; iii) investigate and validate relationships between LAI and yield for two cultivars in three crop rotations across varying soil moisture regimes; iv) validate relationships found in previous work between soybean LAI and yield across soil moisture regimes in grower fields; and v) determine if normalized difference vegetation index (NDVI) values obtained from aerial infrared images can be used to estimate LAI and soybean yield variability. Increasing plant population increased LAI for cultivars at Suffolk in 2000 and 2001, but LAI increased with plant populations on soils with lower plant available water holding capacity (PAWHC) at Port Royal in 2001. In 2000 at Suffolk, seed yield increased quadratically with increasing population and cultivar did not affect the response. In 2001, no relationship occurred between yield and plant population at either Suffolk or Port Royal, but the relationship of yield and LAI depended on soybean development stage at both sites. However, this relationship was not consistent between sites or years. In another study, crop rotation affected LAI and yield one out of two years. However, LAI and yield in both study years were negatively impacted on soil types with lower PAWHC. Where significant, a linear relationship was observed between yield and LAI for all soil types. Studies on grower fields showed similar linear relationships between yield and LAI. Remote sensing techniques showed promise for estimation of LAI and yield. When obtained at an appropriate development stage, vegetation indices correlated to both LAI and yield, and were observed to be effective as a predictor of LAI until plants achieved LAI levels of 3.5 to 4.0.
- Development of field-specific spring N rate recommendations for winter wheatScharf, Peter C. (Virginia Tech, 1993)Optimum spring N fertilizer rates for winter wheat in Virginia vary widely from field to field, but traditionally spring N is applied at a uniform rate to all fields. A recently-developed tissue test procedure provides a field-specific evaluation of crop N status and predicts optimum N rate for the second spring N application in a split spring application management system. However, this procedure is based on a small number of researcher-planted experiments utilizing a single cultivar; it fails to provide field-specific rate recommendations for the first spring N application; and it is not accessible to farmers who are unwilling to split their spring N applications. Our objectives were: to evaluate the reliability of the tissue test procedure in a large number of farmer fields; to develop a method for making field-specific N rate recommendations for the first spring application in a split-application management system; and to develop a method for making field-specific N rate recommendations in a single-application management system. Forty-five spring N rate experiments were established in farmer fields over a five-year period. A range of N fertilizer rates was applied in early spring (Zadoks growth stage 25) and again in mid-spring (Zadoks growth stage 30) in all possible combinations. Yield data were used to calculate economic optimum N rates at growth stage (GS) 25 and GS 30 with split-application management, and at GS 25 with single-application management. These optima were regressed against a variety of predictor variables measured in the same fields. The reliability of the previously-developed tissue test procedure for making GS 30 N rate recommendations was confirmed. Tiller density was the best predictor of optimum GS 25 N rate with split-application management, while soil nitrate to 90 cm was the best predictor of optimum GS 25 N rate with single-application management. These three relationships fit together to form a flexible and powerful system for making spring N rate recommendations for winter wheat. This system increased estimated profit and apparent fertilizer efficiency in these experiments.
- Development of Nitrogen rate Recommendations for No-till Dryland Grain Sorghum in VirginiaKhosla, Rajiv (Virginia Tech, 1998-10-26)Little research has been done in the humid mid-Atlantic region to develop full-season N fertilizer recommendations for dryland no-tillage grain sorghum (Sorghum bicolor L. Moench) production. The objectives of this study were: (i) to determine the optimum rate of band-placed starter N fertilizer needed in combination with side-dress N applications to achieve economic grain yields, (ii) to investigate if pre-plant broadcast N applications are as efficient as band-placed plus side-dress N applications, (iii) to evaluate the response of grain sorghum yield to partitioned side-dress N applications, and (iv) to study the influence of residual soil profile mineral-N (nitrate and ammonium) on sorghum response to applied N fertilization. Multi-location field studies were conducted over three years. A range of N treatments of various starter-band and side-dress N rates were applied. The experimental data indicate that an optimum rate of N fertilization depends on residual soil mineral-N. Little or zero starter-band-N in conjunction with side-dress-N applications of 130 kg of N ha-1 for soils testing high in mineral-N ( 50 kg N ha-1 in the top 0.3m of surface soil) at planting, and a starter-band-N supplement of 40 kg N ha-1 in conjunction with 130 kg N ha-1 side-dress N for soils testing low in mineral-N at planting, optimized the grain sorghum yields in these experiments. Broadcast N applications were observed to be as efficient as band placed N applications when followed by rainfall soon after application. Grain sorghum yields did respond to the partitioned side-dress N applications. However, partitioning of side-dress N application again depends on the residual mineral-N level present in the soil. In order to consider residual soil mineral-N in making N fertilizer recommendations "Associated Nitrogen Fertilizer Equivalency" (ANFE) values were calculated. ANFE is the amount of applied N that has potential to produce the same yield as that produced by the residual soil mineral-N. The N fertilizer recommendations based on ANFE values were quite close for two out of four sites as compared to the N rates at which the maximum yields were obtained in this study.
- Double-crop corn (zea mays) weed control in VirginiaKing, Steve Russell (Virginia Tech, 2000-04-25)Double-crop production of corn (Zea mays L.) for grain following the harvest of small grain is not currently practiced in Virginia. Historical precipitation and evapotransportation data indicate that delayed corn planting could result in a higher probability of moisture during critical periods of crop development. Double-crop corn may also reduce economic risk as two crops would be harvested in the same year. Field experiments were conducted in three Virginia locations in 1998 and 1999 to determine the herbicide inputs required for double-crop corn production relative to those required in full-season no-till corn production. Experiments were conducted in a split-plot, randomized complete block design with cropping system as the main plot and herbicide treatment as the subplot. Herbicide treatments included combinations of nonselective herbicides for no-till establishment and/or preemergence residual herbicides and/or selective postemergence herbicides in both production systems. Glyphosate-tolerant corn was planted in all experiments and postemergence glyphosate treatments were also evaluated. In each experiment, dependent variables included weed control by species evaluated throughout the season, as well as weed biomass and corn yield evaluated at the end of the growing season. Generally, nonselective herbicides were not required in the double-crop system where atrazine was applied as a preemergence treatment, or where selective postemergence treatments were applied. Where a significant proportion of the infestation was comprised of perennial species, however, atrazine treatments were not sufficient in the double-crop system. Postemergence glyphosate treatments provided excellent broad-spectrum weed control in this situation. In heavy annual grass infestations, postemergence glyphosate treatments provided superior weed control to preemergence treatments alone, and equivalent weed control to treatments in which both preemergence and postemergence herbicides were applied. Corn yield response to weed control and cropping system variables varied significantly between the 1998 and 1999 growing seasons. Where adequate late-season rainfall was received, economic return from small grain and corn crops in the double-crop system was higher than the return in the full-season system, particularly in infestations where the double-crop system allowed significant reduction in herbicide input.
- Ecology of the stalk borer Papaipema nebris (Guenee), (Lepidoptera:noctuidae), in the southwestern Virginia no-till corn agroecosystemHighland, H. Brett (Virginia Polytechnic Institute and State University, 1986)The stalk borer (SB), Papaipema nebris Gn. exhibited from 7 to 9 instars when reared on a meridic diet in a control-led environment. Both sexes went through variable numbers of instars before pupation. Head capsule width measurements did not form discrete sets, and overlap occurred between adjacent instars. In feeding preference tests with first instar larvae using either leaf disks or stem sections, higher numbers of larvae fed on grasses, such as orchardgrass, Dactylis glomerata L. or fescue, Festuca arundinacea Schreb., compared to numbers feeding on other plants. In no-choice laboratory and field tests, larvae tunnelled into plant stalks at the same frequency by which they would feed on foliage, showing a tendency to tunnel into plants they accept as hosts. Third or fourth instar larvae preferred to tunnel into orchardgrass and rye, Secale cereale Lover the other plants present in field cage tests. The SB prefers to oviposit on narrow leaved, perennial grasses, such as fescue and orchardgrass, over wide leaved annual grasses or broadleaf plants. Significantly higher numbers of eggs were laid on upright over prostrate plants in cage studies. The SB also preferred ovipositing on desiccating or dry plant material. Higher numbers of SB infested corn seedlings were found next to field margins compared to numbers found within fields. Contour and transect maps of SB infested fields showed considerable aggregation over three years, and this distribution was confirmed by high variance to mean ratios, and small k values. SB distribution in no-till corn can be adequately described by the negative binomial model. Field collections of SB in corn stalks showed 2, 3, or 4 instar larvae infesting the youngest seedlings. Variation existed in larval development from year to year. Linear regression covariance analysis showed that larval development was different between field collected larvae from year to year.
- Effect of postemergence johnsongrass control on MCDV and MDMV incidence and severity in field cornEberwine, John Wright (Virginia Tech, 1996-04-05)In the summers of 1989 and 1990, researchers in Va. and Md. began to observe lateseason reductions in com vigor in areas treated with nicosulfuron or primisulfuron for postemergence johnsongrass control. Symptoms observed included chlorosis, reddening of the leaves and shortening of the internodes. The nature and time of symptom expression were consistent with those caused by maize chlorotic dwarfvirus (MCDV) and maize dwarf mosaic virus (MDMV) infection of com. It was hypothesized that postemergence johnsongrass control increased the incidence and severity of MCDV and MDMV in virus-susceptible corn hybrids due to increased feeding by vectors of these viruses on treated corn. Field experiments were conducted in 1991 and 1992 to evaluate the effect of postemergence johnsongrass control with broad casted nicosulfuron, postemergence directed imazethapyr, mechanical control and no control on virus disease incidence and severity in a virus-susceptible ('Southern States 565') and a virus-tolerant ('Southern States 844) corn hybrid. Visual injury evaluations taken 10 weeks after treatment showed that the virus-susceptible com hybrid sustained significantly more injury, averaged across johnsongrass control methods, than did the virus-tolerant corn hybrid. Within the virus-susceptible com hybrid, where johnsongrass was controlled, regardless of method, significantly more injury was observed relative to the nontreated check. Further, averaged across johnsongrass control treatments, the virus-tolerant corn hybrid yielded significantly higher compared to the virus-susceptible com hybrid. Experiments conducted in 1993 and 1994 utilized cages as a means of preventing insect movement from the infected johnsongrass to the crop. Blackfaced leafhopper evaluations suggested that the cages significantly reduced leafhopper movement from the infected johnsongrass to the corn, however complete exclusion was not achieved. Results of corn tissue assays showed that MCDV and MDMV were being transmitted, however no treatment differences were detected. Two experiments were conducted in 1994 to analytically test the hypothesis and to determine the time course of MCDV and MDMV double infection of corn tissue. Johnsongrass control treatments evaluated included broadcast nicosulfuron and no treatment. Postemergence johnsongrass control increased MCDV and MDMV incidence 9 to 21 days after treatment. Further, significantly more double infections of MCDV and MDMV were observed 14 to 21 days after treatment in experimental units receiving the nicosulfuron application.
- Evaluation And Characterization of Herbicide Resistance In Italian Ryegrass (Lolium multiflorum Lam.) Biotypes To Diclofop-methyl And Alternative Management OptionsMorozov, Ivan Vladimirovitch (Virginia Tech, 2004-03-29)Italian ryegrass (Lolium multiflorum Lam.) is a competitive weed in small grain production areas throughout the northwestern and southeastern US. In small grains, Italian ryegrass has generally been controlled with postemergence treatments of diclofop, or diclofop-methyl, a member of the subfamily of the aromatic carboxylic acid family, the aryloxyphenoxypropionates. The first incidence of diclofop resistance in Italian ryegrass was reported in Virginia in 1995. Experiments to characterize diclofop resistance in several Virginia biotypes of Italian ryegrass included the following objectives: (1) evaluation of the presence of diclofop resistance in several Italian ryegrass biotypes collected across Virginia, (2) evaluation of alternative herbicide efficacy for diclofop resistant Italian ryegrass control, and (3) characterization of the aryloxyphenoxypropionate (APP) resistance mechanism in resistant Italian ryegrass biotypes. The response of 32 biotypes to diclofop collected from various locations statewide with varying histories of diclofop applications confirmed diclofop resistance in Virginian Italian ryegrass populations. At 4-times the label-recommended application rate, only 50% of biotypes previously exposed to diclofop in a cropping situation were adequately controlled versus 94% of the biotypes not previously treated with diclofop. Tralkoxydim provided the most effective control of four of the biotypes. No postemergence treatment effectively controlled one biotype previously exposed to diclofop applications. Effective preemergence herbicide treatments for Italian ryegrass control in the greenhouse included acetochlor (two formulations) and flufenacet plus metribuzin. In the field, flufenacet plus metribuzin resulted in excellent Italian ryegrass control, little crop injury, and acceptable barley yields. Acetyl-coenzyme A carboxylase (ACCase) assays and herbicide absorption, translocation, and metabolism studies were conducted to investigate resistant mechanism(s) to two APP herbicides, diclofop and quizalofop. ACCase assays indicated no differences in enzyme activity between the two biotypes of Italian ryegrass evaluated. Furthermore, no significant differences in the specific activity of ACCase were detected between the two biotypes in the absence of diclofop. [14C]Quizalofop-P absorption, translocation, and metabolism did not differ between resistant and susceptible Italian ryegrass biotypes. Lack of a significant biotype effect suggests that differential metabolism does not explain the differential response to diclofop treatments observed in the herbicide dose-plant response experiment.
- Fate of ¹⁵N-depleted fertilizer N in a corn-rye cropping sequence: plant uptake and soil distributionDitsch, David C. (Virginia Tech, 1991-08-03)A field experiment was conducted in the Ridge and Valley region of Virginia near Blacksburg during the 1989 through 1991 corn-rye growing seasons. The treatments in this experiment consisted of varying amounts of ¹⁵N-depleted fertilizer N applied to corn (Zea mays L.) at planting followed by a winter rye (Secale cereale L.) cover crop treatment. The research was divided into four studies. The first study was conducted to evaluate an analytical procedure that could be used for the diffusion of low masses of ¹⁵N-labeled NH₄ in 2M KCI and subsequent analysis for N recovery and ¹⁵N concentrations in soil by direct combustion mass spectrometry. Diffusion was found to be a suitable technique for preparing low-mass N samples for automated ¹⁵N analysis by Automated Nitrogen-Carbon Analysis/Mass Spectrometry (ANCA/MS). Recoveries of low masses of added N were quantitative, and accurate ¹⁵N concentrations were obtained when the results were corrected for isotope dilution due to background or contaminant N. The second study was conducted to determine if ¹⁵N-depleted fertilizer N could be satisfactorily used as a tracer of residual fertilizer N in plant tissue and various soil N fractions through a corn-winter rye crop rotation. Fertilizer-derived N in the soil NO₃-N fraction following corn harvest was clearly detectable and distinguishable from natural abundance to a 90-cm depth. Detection of fertilizer N in the total N pool below the 30-cm depth was not reliable, particularly at the lower N rates. Clay-fixation of fertilizer N measured at corn harvest was not detected by ¹⁵N analysis. Inconclusive results indicate that further research is needed to determine the feasibility of using depleted material for measuring clay-fixation of fertilizer-derived NH₄⁺-N. Nitrogen uptake by a winter rye cover crop reduced soil NO₃-N levels below that required for accurate isotope-ratio analysis. Following winter fallow (approx. 1 yr after fertilizer application) residual ¹⁵N-depleted fertilizer N was still detectable in plant tissue and the soil NO₃-N fraction. The objectives of the third study were to measure plant uptake and soil distribution of fertilizer N applied to corn at varying N rates and to determine the relationships between economic optimum N rate, fertilizer-use efficiency, and potential leaching loss of residual fertilizer N to groundwater. Plant recovery of fertilizer N in 1989 ranged from 33 to 47% even though no grain yield and fertilizer N uptake response resulted from N fertilization. Greatest accumulation of residual fertilizer N was found in the surface 30-cm both years following corn harvest. The economic optimum N rate for 1990 corn planted into a rye mulch (218 kg N ha⁻¹) corresponded closely with the rate (224 kg N ha⁻¹) resulting in the highest fertilizer-use efficiency. Low levels of residual fertilizer-derived NO₃ in the 60-90-cm depth following the 1990 corn harvest provides evidence to support the use of the economic optimum N rate concept from both economic and environmental viewpoints. The fourth study was designed to measure the effectiveness of a winter rye cover crop for recovering residual fertilizer N from the previous application of varying N rates to corn. Recovery of fertilizer N by winter rye increased with increasing N rate applied to the previous corn crop and ranged from 3.5 to 35.9 kg N ha⁻¹ in 1990 and 2.3 to 25.7 kg N ha⁻¹ in 1991. Residual fertilizer N recovery in 1991 was higher in rye plots where the previous corn crop had been planted no-till into rye stubble as compared to corn planted no-till into rye mulch. Little or no fertilizer-derived mineral N was measured in the soil to a final depth of 90-cm following a winter rye cover crop. Amounts of fertilizer-derived mineral N increased with depth and previous fertilizer N rate applied to corn following winter fallow. These results provide evidence to support the use of a winter rye cover crop on a silt loam soil to recover residual fertilizer-derived mineral N that might otherwise be lost to groundwater.
- Grain Sorghum Field Emergence and Seed Vigor TestsDetoni, Cezar Ernesto (Virginia Tech, 1997-06-30)Poor emergence of sorghum [(Sorghum bicolor (L) Moench] affects the stand and potential yields. The major objective of this research was to find correlations among field emergence data and laboratory seed vigor tests. Thirty-two and 30 hybrids of sorghum were planted at three Virginia locations in 1995 and 1996, respectively. Field emergence was subsequently compared with results from laboratory tests that included: 1) standard germination; 2) osmotic-stress using polyethylene glycol 8000 (mw); 3) heat-shock using 2 hr at 50°C stress; 4) electrical conductivity of steep water of germinating seeds; and 5) seed mass. Field emergence of grain sorghum differed among hybrids, years and locations. Mean emergence across years and locations was 67.5%, whereas mean germination in the laboratory was 87.8%. There were interaction between hybrid and location and between hybrid and year. Germination under optimal conditions (standard germination test) and with osmotic or heat-shock stress differed among hybrids. Regression analyses showed a weak correlation between laboratory germination (with or without stress) and field emergence in both years. The fresh weight of seedlings whether from standard germination or stress tests also differed among hybrids in both years, and the associations with field emergence were weakly correlated in 1996. Hybrids showed significant differences in radicle length when grown under laboratory stress in both years following standard germination. There was a weak correlation with field emergence and radicle length following heat-shock treatment in 1996. The measurement of electrical conductivity in the seed steep water showed significant differences among hybrids. A weak correlation with field emergence was seen in 1996. Conductivity values per gram of seed and per cm² of seed area revealed differences among hybrids. The correlation of these parameters with field emergence was higher than conductivity per seed. Seed mass varied among hybrids in both years , but was no correlation between seed mass and emergence. Of the laboratory parameters examined, germination proved to be the most consistent predictor of variations in field emergence of sorghum hybrids.
- Investigation of Biotic and Abiotic Factors Affecting Double-Cropped Corn (Zea mays L.) Production in VirginiaSforza, Peter M. (Virginia Tech, 2004-04-30)Double-cropping of corn (Zea mays L.) for grain following the harvest of a small grain crop has been under evaluation in Virginia as an alternative cropping strategy (Brann and Pitman, 1997). To assess the potential constraints on late planted corn imposed by insects and diseases, double-cropped corn was evaluated in field experiments in Montgomery County, Virginia from 1998 to 2000. Factors included two near-isoline hybrids (NK4640 and NK4640Bt), insecticides at planting (tefluthrin in all years, 1998-2000; and imidacloprid in 1999 and 2000), and fungicide treatments (azoxystrobin or propiconazole). Response variables included yield, moisture at harvest, grain test weight, damage by European corn borer (Ostrinia nubilalis), damage by corn earworm (Heliothis zea), disease progress curves for gray leaf spot Cercospora zeae-maydis), and number of plants exhibiting virus symptoms. The Bt hybrid performed significantly better than the non-Bt hybrid for yield and test weight in double-cropped corn in 1998 and 2000, but not in 1999. A spatially referenced site suitability analysis was performed for full season and double-cropped corn in Virginia using weighted abiotic factors and constraints. Thornthwaite potential evapotranspiration (PET) and PET minus precipitation were used to identify areas of the state having a lower average moisture deficit during the silking months for double-cropped corn compared to full-season corn. It is concluded that double-cropped corn production is a viable option in Virginia where abiotic factors are not constraining, particularly growing season length and moisture availability during the sensitive stages of development.
- Investigation of Methods and Mechanisms of Control of Italian Ryegrass (Lolium multiflorum) in Corn (Zea mays) and Small Grains and of the Effects of Johnsongrass (Sorghum halepense) Control on Virus Diseases in Glyphosate-Tolerant CornKing, Steve Russell (Virginia Tech, 2002-07-16)Field experiments were conducted in Virginia to evaluate the efficacy of AEF-130060 03 plus AEF-107892 applied postemergence (POST) for the control of Italian ryegrass [Lolium multiflorum (Lam)] in barley [Hordeum vulgare (L.)] in comparison to other herbicides currently registered for use in wheat [Triticum aestivum (L.)] and barley. Laboratory experiments were also conducted to evaluate absorption, translocation and metabolism of AEF-130060 03 plus AEF-107892 in wheat, barley, and Italian ryegrass with or without the addition of dicamba. AEF-130060 03 plus AEF-107892 was applied alone at three POST timings. All of these applications were effective in controlling Italian ryegrass. The third application timing of AEF-130060 03 plus AEF-107892 commonly resulted in lower yields than the first or second application timing, due to increased duration of Italian ryegrass competition, increased barley injury and insufficient time for barley recovery from this injury. In the field experiment, significantly greater barley injury was observed when AEF-130060 03 plus AEF-107892 was combined with 2,4-D and dicamba. Early postemergence (EP) treatments of AEF-130060 03 plus AEF-107892 provided control of Italian ryegrass equivalent to that of delayed preemergence (DPRE) applications of flufenacet plus metribuzin when rainfall was received. However, when rainfall was not received AEF-130060 03 plus AEF-107892 provided superior control. Because the efficacy of AEF-130060 03 plus AEF-107892 is not dependant on rainfall, it should provide more consistent control of Italian ryegrass than DP treatments. Laboratory experiments indicated that Italian ryegrass absorbed greater than 2.5, 2.0, and 1.5 times the amount of applied radioactivity at 24, 48, and 96 hours after treatment (HAT), respectively, than wheat or barley. Metabolism experiments indicated that quantity of parent compound in the three species was greatest in Italian ryegrass, followed by barley and then wheat. However, the sum total of metabolites was not different between species. A higher rate of metabolism of AEF-130060 03 plus AEF-107892 was also observed in wheat and barley than in Italian ryegrass. Thus, lower absorption of herbicide by wheat and barley, coupled with a more rapid rate of metabolism, most likely accounts for differential selectivity between these plant species. No differences in absorption, translocation or metabolism were observed within the three plant species due to the addition of dicamba. An additional experiment was conducted in 2000 and 2001 to evaluate the efficacy of preemergence (PRE) and EP applications of DPX-R6447 for the control of Italian ryegrass in wheat and barley in comparison to other herbicides currently registered for use in these crops. Barley and wheat injury and yield were similar with treatments of DPX-R6447 at rates below 176 g ai/ha and treatments of flufenacet plus metribuzin applied alone in both years. Consistent Italian ryegrass control with DPX-R6447 occurred only with rates of 176 g ai/ha or greater in both years. However, these rates resulted in variable injury in both wheat and barley between years. Rates higher than 176 g ai/ha of DPX-R6447 resulted in unacceptable barley and wheat injury. The lack of consistency with regard to barley and wheat injury could limit the utility of this compound in these crops. Field trials were conducted in Virginia to evaluate herbicide programs for control of Italian ryegrass in no-till corn [Zea mays (L.)] establishment. Herbicide programs using transgenic corn hybrids were compared to standard programs that utilize non-selective herbicides in combination with high rates of triazine herbicides. Italian ryegrass control and corn yields similar to those provided by standard programs could be attained through the use of paraquat plus atrazine, and glyphosate applied in combination with atrazine or rimsulfuron plus thifensulfuron-methyl. In glyphosate-tolerant corn, EP applications of glyphosate controlled Italian ryegrass, but yield did not differ from yields of corn treated with standard PRE applications of glyphosate plus atrazine. The use of glufosinate, imazethapyr plus imazapyr, or sethoxydim with appropriate herbicide-tolerant hybrids did not demonstrate potential for improved control of Italian ryegrass. Field experiments were also conducted to investigate the incidence and severity of maize chlorotic dwarf virus (MCDV) and maize dwarf mosaic virus (MDMV) in response to POST johnsongrass control in two corn hybrids. Recent observations have indicated a lack of virus-tolerance in glyphosate-tolerant corn hybrids in Virginia. The rapidity of virus disease development in corn resulting from application of glyphosate or nicosulfuron was also investigated. The virus-susceptible glyphosate-tolerant hybrid developed significantly higher levels of virus incidence three weeks after treatment than the virus-tolerant, non-transgenic hybrid, and virus incidence and severity increased throughout the duration of the growing season. Little or no disease incidence occurred in the virus-tolerant hybrid. The virus-susceptible hybrid exhibited significant increases in disease incidence in response to any herbicide treatment applied to johnsongrass-containing plots relative to the same treatment applied to weed free plots. Johnsongrass control with nicosulfuron or glyphosate caused similar disease incidence and severity in the virus-susceptible hybrid, regardless of application method. Results of these experiments indicated that growers' choice of hybrid should focus primarily on disease resistance rather than herbicide resistance.
- Nitrogen Management for Winter Wheat: Principles and RecommendationsAlley, Marcus M.; Scharf, Peter C.; Brann, Daniel E.; Baethgen, Walter E.; Hammons, J. L.; Thomason, Wade E. (Virginia Cooperative Extension, 2019-03-20)Discusses the use of nitrogen fertilizers for winter wheat and makes recommendations for when and how much nitrogen fertilizer to use.
- Nitrogen Management in No-till Winter Wheat Production SystemsGaidos, Joan Marie (Virginia Tech, 2001-04-12)Determining optimum N fertilization rate and timing is critical to improve yields and economic sustainability for no-till winter wheat (Triticum aestivum L.) in the Virginia Coastal Plain. Little data are available evaluating N management strategies, optimum N rate prediction methods, or potential NO3 leaching under no-till wheat in soils and climate similar to the mid-Atlantic region. The objectives of our research were: (1) to determine economic optimum N fertilization rates and timings; (2) evaluate selected methods for predicting optimum N rates at GS 25 and GS 30; and (3) measure NO3 leaching loss under selected N management strategies. Eleven experiments over three years evaluated N rates at GS 25 and GS 30. Six experiments over two years evaluated pre-plant and December or GS 25 N rates under no-till winter wheat in farm fields of the Coastal Plain region of Virginia. Nitrate leaching was measured under selected pre-plant and December or GS 25 N application rates. All sites represented common Coastal Plain soil types and cultural practices for no-till wheat production. Yield data were used to calculate economic optimum N rates for a range of combinations of N management strategies. Optimum N rates were regressed against tiller density at GS 25, and wheat tissue N content and SPAD chlorophyll meter readings at GS 30, to determine their effectiveness as predictors of the optimum N rate at GS 25 or GS 30. Tiller density was an effective predictor of optimum GS 25 N rate in these split application management strategies. However, wheat tissue N contents and SPAD chlorophyll meter readings were not effective predictors of optimum N application at GS 30. Yields across all experimental designs were affected by planting date. Timely planted no-till wheat consistently produced higher yields compared to late planted. Sites under continuous no-till production for 8 years or more also produced higher yields than sites under continuous no-till production for less than 8 years. Including an additional December N application with the more traditional N management strategy of pre-plant, GS 25 and GS 30 N applications improved yields. Nitrate leaching loss at selected pre-plant and December or GS 25 N rates was not higher than background check plot levels under timely planted no-till wheat. Additionally, economic optimum N application rates and timings at these sites did not produce NO3 leaching losses above background levels under timely or late planted wheat, except at one late planted site. These data indicate N application rates and timings in no-till wheat can be managed for improved economic sustainability and reduced environmental impact.
- Optimizing soil and fertilizer nitrogen use by intensively managed soft red winter wheatBaethgen, Walter E. (Virginia Polytechnic Institute and State University, 1987)Field experiments were conducted in the Coastal Plain and Ridge and Valley regions of Virginia during the 1981-82 through 1985-86 winter wheat growing seasons. The treatments in all experiments consisted of varying amounts of N fertilizer rates applied at Zadoks' growth stages 25 (GS 25) and 30 (GS 30). The research was divided into three studies. The first study was conducted to assess the effect of N fertilizer rates and climatic conditions on the amounts and patterns of the crop N uptake. Dry matter production and total N concentration were measured in total above ground plant material at different growth stages, as well as in leaves, stems, and spikes. Plant N uptake was affected by the climatic conditions in the different growing seasons. Temperature and precipitation variations in early spring determined the differences in amounts and patterns of the N uptake by whole plants and by the various plant portions. Maximum N uptake daily rates were obtained in the period immediately after GS 30 suggesting that this is the wheat growth stage in which the highest efficiency of N fertilizer use could be expected. Crop N uptake at GS 30 also appeared to be a potentially good indicator of the plant N requirements. The second study was designed to develop models for determining critical N levels and optimum N fertilizer rates for winter wheat. Two nonlinear models were successfully developed to determine critical N levels at GS 30 utilizing plant N concentration at GS 30 (N%30) and crop N uptake at GS 30 (NUP30). The R² values for the models utilizing N%30 and NUP30 as independent variables were 0.87, and 0.82, respectively. Simple regression models were successfully developed to predict N rates required at GS 30 to obtain either maximum or economically optimum grain yields. The models utilized NUP30 as the independent variable and had high correlation coefficients and good predicting ability. The objective of the third study was to determine the recommended amount of N fertilizer to be applied at GS 25 that would optimize the use of the simple linear regression models developed in the second study. Quadratic programming models were developed with the objective of maximizing marginal profit with N fertilizer application. The models were then solved to determine the amounts of N at GS 25 and at GS 30 that would produce the maximum attainable profit. Four recommended nitrogen fertilizer rates at GS 25 (N25) were evaluated: 0, 30, 60, and 100 kg N ha⁻¹. The difference (D) between the yields with maximum attainable profit (Y) and the yields when N25 was forced to be 0, 30, 60, and 100 kg N ha⁻¹ (ΥR) was then calculated (D = Y - YR). The best N25 recommendation was the one that minimized the mean value, standard deviation, and coefficient of variation of D. This methodology was used for 3 nitrogen fertilizer : wheat price ratios (2.0, 4.0, and 8.0). The results indicated that the best recommendations for N25 were 50 - 60 kg N ha⁻¹ for N fertilizer : wheat price ratios of 2.0 - 4.0, and 40 - 50 kg N haha⁻¹ for a price ratio of 8.0. Sensitivity analysis was then performed to study the effect of variations in the N fertilizer : wheat price ratio on the recommended N rates. The results indicated that the recommended N rates were essentially insensitive to the variations in the price ratio of N fertilizer : wheat