Browsing by Author "Brault, Aaron C."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Duration of seminal Zika viral RNA shedding in immunocompetent mice inoculated with Asian and African genotype virusesMcDonald, Erin M.; Duggal, Nisha K.; Delorey, Mark J.; Oksanish, James; Ritter, Jana M.; Brault, Aaron C. (Elsevier, 2019-06-20)Prior to the emergence of Asian genotype Zika virus (ZIKV) in the Western hemisphere, sexual transmission in humans was documented. Sexual transmission by African genotype ZIKVs has not been assessed in laboratory animal models, due to rapid and high mortality rates of immunodeficient mice following inoculation. To overcome these limitations, immunocompetent C57Bl/6 mice were used to longitudinally assess Asian and African genotype ZIKV sexual transmission potential. Furthermore, to determine if enhanced pathogenesis of African genotype ZIKVs is due to structural determinants, PRVABC59 prM/E was replaced with African MR766 prM/E (chimeric ZIKV). The African genotype and chimeric ZIKV elicited greater pathogenic effects in the male reproductive tract and generated higher viremias. Yet, the duration, magnitude and efficiency of seminal shedding of infectious virus and viral RNA were similar between chimeric-, African and Asian genotype ZIKVinoculated mice. These data show that increased male reproductive tract pathology does not increase sexual transmission potential.
- Heartland Virus Epidemiology, Vector Association, and Disease PotentialBrault, Aaron C.; Savage, Harry M.; Duggal, Nisha K.; Eisen, Rebecca J.; Staples, J. Erin (MDPI, 2018-09-14)First identified in two Missouri farmers exhibiting low white-blood-cell and platelet counts in 2009, Heartland virus (HRTV) is genetically closely related to severe fever with thrombocytopenia syndrome virus (SFTSV), a tick-borne phlebovirus producing similar symptoms in China, Korea, and Japan. Field isolations of HRTV from several life stages of unfed, host-seeking Amblyomma americanum, the lone star tick, implicated it as a putative vector capable of transstadial transmission. Laboratory vector competence assessments confirmed transstadial transmission of HRTV, demonstrated vertical infection, and showed co-feeding infection between A. americanum. A vertical infection rate of 33% from adult females to larvae in the laboratory was observed, while only one of 386 pools of molted nymphs (1930) reared from co-feeding larvae was positive for HRTV (maximum-likelihood estimate of infection rate = 0.52/1000). Over 35 human HRTV cases, all within the distribution range of A. americanum, have been documented. Serological testing of wildlife in areas near the index human cases, as well as in widely separated regions of the eastern United States where A. americanum occur, indicated many potential hosts such as raccoons and white-tailed deer. Attempts, however, to experimentally infect mice, rabbits, hamsters, chickens, raccoons, goats, and deer failed to produce detectable viremia. Immune-compromised mice and hamsters are the only susceptible models. Vertical infection augmented by co-feeding transmission could play a role in maintaining the virus in nature. A more complete assessment of the natural transmission cycle of HRTV coupled with serosurveys and enhanced HRTV disease surveillance are needed to better understand transmission dynamics and human health risks.
- Intracellular Diversity of WNV within Circulating Avian Peripheral Blood Mononuclear Cells Reveals Host-Dependent Patterns of PolyinfectionTalmi-Frank, Dalit; Byas, Alex D.; Murrieta, Reyes; Weger-Lucarelli, James; Rückert, Claudia; Gallichotte, Emily N.; Yoshimoto, Janna A.; Allen, Chris; Bosco-Lauth, Angela M.; Graham, Barbara; Felix, Todd A.; Brault, Aaron C.; Ebel, Gregory D. (MDPI, 2023-05-26)Arthropod-borne virus (arbovirus) populations exist as mutant swarms that are maintained between arthropods and vertebrates. West Nile virus (WNV) population dynamics are host-dependent. In American crows, purifying selection is weak and population diversity is high compared to American robins, which have 100- to 1000-fold lower viremia. WNV passed in robins leads to fitness gains, whereas that passed in crows does not. Therefore, we tested the hypothesis that high crow viremia allows for higher genetic diversity within individual avian peripheral blood mononuclear cells (PBMCs), reasoning that this could have produced the previously observed host-specific differences in genetic diversity and fitness. Specifically, we infected cells and birds with a molecularly barcoded WNV and sequenced viral RNA from single cells to quantify the number of WNV barcodes in each. Our results demonstrate that the richness of WNV populations within crows far exceeds that in robins. Similarly, rare WNV variants were maintained by crows more frequently than by robins. Our results suggest that increased viremia in crows relative to robins leads to the maintenance of defective genomes and less prevalent variants, presumably through complementation. Our findings further suggest that weaker purifying selection in highly susceptible crows is attributable to this higher viremia, polyinfections and complementation.
- Mutations present in a low-passage Zika virus isolate result in attenuated pathogenesis in miceDuggal, Nisha K.; McDonald, Erin M.; Weger-Lucarelli, James; Hawks, Seth A.; Ritter, Jana M.; Romo, Hannah; Ebel, Gregory D.; Brault, Aaron C. (2019-04)Zika virus (ZIKV) infection can result in neurological disorders including Congenital Zika Syndrome in infants exposed to the virus in utero. Pregnant women can be infected by mosquito bite as well as by sexual transmission from infected men. Herein, the variants of ZIKV within the male reproductive tract and ejaculates were assessed in inoculated mice. We identified two non-synonymous variants at positions E-V330L and NS1-W98G. These variants were also present in the passage three PRVABC59 isolate and infectious clone relative to the patient serum PRVABC59 sequence. In subsequent studies, ZIKV E-330L was less pathogenic in mice than ZIKV E-330V as evident by increased average survival times. In Vero cells, ZIKV E-330L/NS1-98G outcompeted ZIKV E-330V/NS1-98W within 3 passages. These results suggest that the E-330L/NS1-98G variants are attenuating in mice and were enriched during cell culture passaging. Cell culture propagation of ZIKV could significantly affect animal model development and vaccine efficacy studies.
- On the Fly: Interactions Between Birds, Mosquitoes, and Environment That Have Molded West Nile Virus Genomic Structure Over Two DecadesDuggal, Nisha K.; Langwig, Kate E.; Ebel, Gregory D.; Brault, Aaron C. (Oxford University Pres, 2019-09-24)West Nile virus (WNV) was first identified in North America almost 20 yr ago. In that time, WNV has crossed the continent and established enzootic transmission cycles, resulting in intermittent outbreaks of human disease that have largely been linked with climatic variables and waning avian seroprevalence. During the transcontinental dissemination of WNV, the original genotype has been displaced by two principal extant genotypes which contain an envelope mutation that has been associated with enhanced vector competence by Culex pipiens L. (Diptera: Culicidae) and Culex tarsalis Coquillett vectors. Analyses of retrospective avian host competence data generated using the founding NY99 genotype strain have demonstrated a steady reduction in viremias of house sparrows over time. Reciprocally, the current genotype strains WN02 and SW03 have demonstrated an inverse correlation between house sparrow viremia magnitude and the time since isolation. These data collectively indicate that WNV has evolved for increased avian viremia while house sparrows have evolved resistance to the virus such that the relative host competence has remained constant. Intrahost analyses of WNV evolution demonstrate that selection pressures are avian species-specific and purifying selection is greater in individual birds compared with individual mosquitoes, suggesting that the avian adaptive and/or innate immune response may impose a selection pressure on WNV. Phylogenomic, experimental evolutionary systems, and models that link viral evolution with climate, host, and vector competence studies will be needed to identify the relative effect of different selective and stochastic mechanisms on viral phenotypes and the capacity of newly evolved WNV genotypes for transmission in continuously changing landscapes.