Browsing by Author "Brindley, Julie C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A Fine Line between Phytotoxicity and Blue When Producing Hydrangea macrophylla in a Nursery at a Low Substrate pHPietsch, Grace M.; Brindley, Julie C.; Owen, James S.; Fulcher, Amy (MDPI, 2022-07-30)Hydrangea macrophylla exhibiting blue sepals (versus purple or pink) have improved marketability; however, little research has been conducted to evaluate aluminum (Al), the element responsible for bluing, on crop growth, effectiveness of bluing sepals, and characteristics of flower clusters in an outdoor nursery. This study compared substrate Al availability, crop growth, flower color, number, and size over a 56-week period in two locations. A polymer coated (90-day release) or ground aluminum sulfate [Al2(SO4)3; water soluble] was either incorporated into a non-limed pine bark substrate, applied to the surface of the substrate as a top dress, or as a routinely applied Al2(SO4)3 drench (low concn.) or applied once (high concn.). In general, application of Al increased plant foliar Al concentration, but also decreased substrate pore-water pH and increased electrical conductivity (EC) with varying effects based on the applied product’s solubility and subsequent longevity. Aluminum sulfate increased the potential of Al phytotoxicity negatively affecting root morphology and creating an undesirable rhizosphere electrochemistry due to the pH being continually acidic, <4, and the EC being temporarily increased to >1.5 mS·cm−1. These suboptimal rhizosphere conditions resulted in a lower quality or smaller plant. No plants exhibited clear, deep blue flower cluster sought by consumers. Neither the effect of pore water pH or EC could, alone or in combination, account for the lack of plant vigor or blue flower clusters when substrate and foliar Al concentrations were adequate in flowering H. macrophylla. More research is needed to investigate the effect of pore-water electrochemical properties, possible mineral nutrient co-factors that provide Al synergisms or toxicity protections, and holistic plant health on ensuring blue coloration of a vigorous H. macrophylla.
- Irrigation return flow and nutrient movement mitigation by irrigation method for container plant productionAbdi, Damon E.; Owen, James S.; Brindley, Julie C.; Birnbaum, Anna; Cregg, Bert M.; Fernandez, R. Thomas (Springer, 2021-09)The production of nursery crops demands substantial irrigation, with overhead irrigation the most common method of application; however, this method is inefficient with respect to water used and the precision with which it is applied, resulting in the generation of irrigation return flow and concomitant agrochemical export. Microirrigation systems such as individual container spray stakes provide water directly to crops thus applying water more efficiently than overhead systems but may be more costly in terms of installation (smaller pipes and components; however, a greater quantity of pipes and components) and maintenance. The study was conducted at the Michigan State University Research Nursery, where four ornamental shrub taxa were produced in #3 (11.3 L) containers using a control with 19 mm overhead irrigation per day and a conventional phosphorus fertilizer (Conv) (19-2.16-6.64), compared with four treatments: a static, daily (2 L per container) spray stake irrigation (SS2Lpd) and conventional phosphorus fertilizer; a static daily (2 L per container) spray stake irrigation and low phosphorus fertilizer (LowP) (19-1.62-6.64); spray stake irrigation based on substrate volumetric water content (theta) (up to 2.4 L per container) (SS theta) and conventional fertilizer; and spray stake irrigation based on theta (up to 2.4 L per container) and low phosphorus fertilizer. Spray stakes reduced irrigation by 76-80% compared to the overhead control, and reduced the generation of both surface and subsurface irrigation return flow (IRF), mitigating the movement of both N and P (over 98% reduction in surface IRF). Plant growth index (GI) was measured on 12 June 2017 and 6 October 2017, followed by a destructive harvest to measure shoot dry weight, and shoot nutritional content. For all four taxa, microirrigation systems were capable of producing plants of equivalent GI and shoot nutritional concentration; however, plants receiving the low phosphorus fertilizer produced less shoot biomass. Microirrigation is effective in reducing water use, water lost to IRF (particularly surface IRF), and associated fertilizer movement, while maintaining crop size.