Browsing by Author "Brooks, Evan B."
Now showing 1 - 18 of 18
Results Per Page
Sort Options
- Beyond Finding Change: multitemporal Landsat for forest monitoring and managementWynne, Randolph H.; Thomas, Valerie A.; Brooks, Evan B.; Coulston, J. O.; Derwin, Jill M.; Liknes, Greg C.; Yang, Z.; Fox, Thomas R.; Ghannam, S.; Abbott, A. Lynn; House, M. N.; Saxena, R.; Watson, Layne T.; Gopalakrishnan, Ranjith (2017-07)Take homes
- Tobler’s Law still in effect with time series – spatial autocorrelation in temporal coherence can help in both preprocessing and estimation
- Continual process improvement in extant algorithms needed
- Need additional means by which variations within (parameterization) and across algorithms addressed (the Reverend…)
- Time series improving higher order products (example with NLCD TCC) enabling near continuous monitoring
- Edyn: Dynamic Signaling of Changes to Forests Using Exponentially Weighted Moving Average ChartsBrooks, Evan B.; Yang, Zhiqiang; Thomas, Valerie A.; Wynne, Randolph H. (MDPI, 2017-08-24)Remote detection of forest disturbance remains a key area of interest for scientists and land managers. Subtle disturbances such as drought, disease, insect activity, and thinning harvests have a significant impact on carbon budgeting and forest productivity, but current change detection algorithms struggle to accurately identify them, especially over decadal timeframes. We introduce an algorithm called Edyn, which inputs a time series of residuals from harmonic regression into a control chart to signal low-magnitude, consistent deviations from the curve as disturbances. After signaling, Edyn retrains a new baseline curve. We compared Edyn with its parent algorithm (EWMACD—Exponentially Weighted Moving Average Change Detection) on over 3500 visually interpreted Landsat pixels from across the contiguous USA, with reference data for timing and type of disturbance. For disturbed forested pixels, Edyn had a mean per-pixel commission error of 31.1% and omission error of 70.0%, while commission and omission errors for EWMACD were 39.9% and 65.2%, respectively. Edyn had significantly less overall error than EWMACD (F1 = 0.19 versus F1 = 0.13). These patterns generally held for all of the reference data, including a direct comparison to other contemporary change detection algorithms, wherein Edyn and EWMACD were found to have lower omission error rates for a category of subtle changes over long periods.
- Enhancing the precision of broad-scale forestland removals estimates with small area estimation techniquesCoulston, John W.; Green, P. Corey; Radtke, Philip J.; Prisley, Stephen P.; Brooks, Evan B.; Thomas, Valerie A.; Wynne, Randolph H.; Burkhart, Harold E. (2021-07)Naional Forest Inventories (NFI) are designed to produce unbiased estimates of forest parameters at a variety of scales. These parameters include means and totals of current forest area and volume, as well as components of change such as means and totals of growth and harvest removals. Over the last several decades, there has been a steadily increasing demand for estimates for smaller geographic areas and/or for finer temporal resolutions. However, the current sampling intensities of many NFI and the reliance on design-based estimators often leads to inadequate precision of estimates at these scales. This research focuses on improving the precision of forest removal estimates both in terms of spatial and temporal resolution through the use of small area estimation techniques (SAE). In this application, a Landsat-derived tree cover loss product and the information from mill surveys were used as auxiliary data for area-level SAE. Results from the southeastern US suggest improvements in precision can be realized when using NFI data to make estimates at relatively fine spatial and temporal scales. Specifically, the estimated precision of removal volume estimates by species group and size class was improved when SAE methods were employed over post-stratified, design-based estimates alone. The findings of this research have broad implications for NFI analysts or users interested in providing estimates with increased precision at finer scales than those generally supported by post-stratified estimators.
- Estimating tree canopy cover using harmonic regression coefficients derived from multitemporal Landsat dataDerwin, Jill M.; Thomas, Valerie A.; Wynne, Randolph H.; Coulston, John W.; Liknes, Greg C.; Bender, Stacie; Blinn, Christine E.; Brooks, Evan B.; Ruefenacht, Bonnie; Benton, Robert; Finco, Mark V.; Megown, Kevin (2020-04)The goal of this study was to evaluate whether harmonic regression coefficients derived using all available cloud free observations in a given Landsat pixel for a three-year period can be used to estimate tree canopy cover (TCC), and whether models developed using harmonic regression coefficients as predictor variables are better than models developed using median composite predictor variables, the previous operational standard for the National Land Cover Database (NLCD). The two study areas in the conterminous USA were as follows: West (Oregon), bounded by Landsat Worldwide Reference System 2 (WRS-2) paths/rows 43/30, 44/30, and 45/30; and South (Georgia/South Carolina), bounded by WRS-2 paths/rows 16/37, 17/37, and 18/37. Plot-specific tree canopy cover (the response variable) was collected by experienced interpreters using a dot grid overlaid on 1 m spatial resolution National Agricultural Imagery Program (NAIP) images at two different times per region, circa 2010 and circa 2014. Random forest model comparisons (using 500 independent model runs for each comparison) revealed the following (1) harmonic regression coefficients (one harmonic) are better predictors for every time/region of TCC than median composite focal means and standard deviations (across times/regions, mean increase in pseudo R-2 of 6.7% and mean decrease in RMSE of 1.7% TCC) and (2) harmonic regression coefficients (one harmonic, from NDVI, SWIR1, and SWIR2), when added to the full suite of median composite and terrain variables used for the NLCD 2011 product, improve the quality of TCC models for every time/region (mean increase in pseudo R-2 of 3.6% and mean decrease in RMSE of 1.0% TCC). The harmonic regression NDVI constant was always one of the top four most important predictors across times/regions, and is more correlated with TCC than the NDVI median composite focal mean. Eigen analysis revealed that there is little to no additional information in the full suite of predictor variables (47 bands) when compared to the harmonic regression coefficients alone (using NDVI, SWIR1, and SWIR2; 9 bands), a finding echoed by both model fit statistics and the resulting maps. We conclude that harmonic regression coefficients derived from Landsat (or, by extension, other comparable earth resource satellite data) can be used to map TCC, either alone or in combination with other TCC-related variables.
- Exponentially Weighted Moving Average Change Detection - Script and Sample DataBrooks, Evan B. (2014-09-29)
- Forest-Associated Fishes of the Conterminous United StatesBury, Gwendolynn W.; Flitcroft, Rebecca; Nelson, Mark D.; Arismendi, Ivan; Brooks, Evan B. (MDPI, 2021-09-15)Freshwaters are important, interconnected, and imperiled. Aquatic ecosystems, including freshwater fishes, are closely tied to the terrestrial ecosystems they are embedded within, yet available spatially explicit datasets have been underutilized to determine associations between freshwater fishes and forested areas. Here, we determined the spatial co-occurrence between freshwater fish distributions and forests within 2129 watersheds of the conterminous United States. We identified 21% of freshwater fishes as associated with forested areas, and 2% as strictly present only in highly forested areas (75–100% forested). The northern coasts and southeast regions, both heavily forested, showed the largest numbers of forest-associated fishes in highly forested areas and fish species richness. Fish associated with low-forested areas occurred in the southwest and central plains. Imperiled fishes were relatively evenly distributed among percent forest categories, which was distinctly different from patterns for all fishes. The identification of forest-associated fishes provides insights regarding species-specific landscape contexts. Determining these large-scale patterns of freshwater biodiversity is necessary for conservation planning at regional levels, especially in highly impacted freshwater ecosystems.
- Fourier Series Applications in Multitemporal Remote Sensing Analysis using Landsat DataBrooks, Evan B. (Virginia Tech, 2013-06-27)Researchers now have unprecedented access to free Landsat data, enabling detailed monitoring of the Earth's land surface and vegetation. There are gaps in the data, due in part to cloud cover. The gaps are aperiodic and localized, forcing any detailed multitemporal analysis based on Landsat data to compensate. Harmonic regression approximates Landsat data for any point in time with minimal training images and reduced storage requirements. In two study areas in North Carolina, USA, harmonic regression approaches were least as good at simulating missing data as STAR-FM for images from 2001. Harmonic regression had an R^2"0.9 over three quarters of all pixels. It gave the highest R_Predicted^2 values on two thirds of the pixels. Applying harmonic regression with the same number of harmonics to consecutive years yielded an improved fit, R^2"0.99 for most pixels. We next demonstrate a change detection method based on exponentially weighted moving average (EWMA) charts of harmonic residuals. In the process, a data-driven cloud filter is created, enabling use of partially clouded data. The approach is shown capable of detecting thins and subtle forest degradations in Alabama, USA, considerably finer than the Landsat spatial resolution in an on-the-fly fashion, with new images easily incorporated into the algorithm. EWMA detection accurately showed the location, timing, and magnitude of 85% of known harvests in the study area, verified by aerial imagery. We use harmonic regression to improve the precision of dynamic forest parameter estimates, generating a robust time series of vegetation index values. These values are classified into strata maps in Alabama, USA, depicting regions of similar growth potential. These maps are applied to Forest Service Forest Inventory and Analysis (FIA) plots, generating post-stratified estimates of static and dynamic forest parameters. Improvements to efficiency for all parameters were such that a comparable random sample would require at least 20% more sampling units, with the improvement for the growth parameter requiring a 50% increase. These applications demonstrate the utility of harmonic regression for Landsat data. They suggest further applications in environmental monitoring and improved estimation of landscape parameters, critical to improving large-scale models of ecosystems and climate effects.
- Growth, Removals, and Management IntensityWynne, Randolph H.; Thomas, Valerie A.; Bender, Stacie; Brooks, Evan B.; Coulston, John W.; Derwin, Jill M.; Gopalakrishnan, Ranjith; Green, Patrick; Harding, David; Sumnall, Matthew; Joshi, Pratik; Ranson, Jon; Schleeweis, Karen; Thomas, R. Quinn; Yang, Zhiqiang (2019-05-01)
- Harmonic Regression for Image Stacks - Script and Sample DataBrooks, Evan B. (2014-11-07)
- How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms?Cohen, Warren B.; Healey, Sean P.; Yang, Zhiqiang; Stehman, Stephen V.; Brewer, C. Kenneth; Brooks, Evan B.; Gorelick, Noel; Huang, Chengqaun; Hughes, M. Joseph; Kennedy, Robert E.; Loveland, Thomas R.; Moisen, Gretchen G.; Schroeder, Todd A.; Vogelmann, James E.; Woodcock, Curtis E.; Yang, Limin; Zhu, Zhe (MDPI, 2017-03-26)Disturbance is a critical ecological process in forested systems, and disturbance maps are important for understanding forest dynamics. Landsat data are a key remote sensing dataset for monitoring forest disturbance and there recently has been major growth in the development of disturbance mapping algorithms. Many of these algorithms take advantage of the high temporal data volume to mine subtle signals in Landsat time series, but as those signals become subtler, they are more likely to be mixed with noise in Landsat data. This study examines the similarity among seven different algorithms in their ability to map the full range of magnitudes of forest disturbance over six different Landsat scenes distributed across the conterminous US. The maps agreed very well in terms of the amount of undisturbed forest over time; however, for the ~30% of forest mapped as disturbed in a given year by at least one algorithm, there was little agreement about which pixels were affected. Algorithms that targeted higher-magnitude disturbances exhibited higher omission errors but lower commission errors than those targeting a broader range of disturbance magnitudes. These results suggest that a user of any given forest disturbance map should understand the map’s strengths and weaknesses (in terms of omission and commission error rates), with respect to the disturbance targets of interest.
- Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experimentsThomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.; Ward, Eric J.; Wynne, Randolph H.; Albaugh, Timothy J.; Dinon-Aldridge, Heather; Burkhart, Harold E.; Domec, Jean-Christophe; Fox, Thomas R.; González-Benecke, Carlos; Martin, Timothy A.; Noormets, Asko; Sampson, David A.; Teskey, Robert O. (Copernicus, 2017-07-26)Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model-data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6ĝ€ × ĝ€105ĝ€km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.
- Near-term investments in forest management support long-term carbon sequestration capacity in forests of the United StatesCoulston, John W.; Domke, Grant M.; Walker, David M.; Brooks, Evan B.; O'Dea, Claire B. (Oxford University Press, 2023-11-21)The forest carbon sink of the United States offsets emissions in other sectors. Recently passed US laws include important climate legislation for wildfire reduction, forest restoration, and forest planting. In this study, we examine how wildfire reduction strategies and planting might alter the forest carbon sink. Our results suggest that wildfire reduction strategies reduce carbon sequestration potential in the near term but provide a longer term benefit. Planting initiatives increase carbon sequestration but at levels that do not offset lost sequestration from wildfire reduction strategies. We conclude that recent legislation may increase near-term carbon emissions due to fuel treatments and reduced wildfire frequency and intensity, and expand long-term US carbon sink strength.
- On-the-Fly Massively Multitemporal Change Detection Using Statistical Quality Control Charts and Landsat DataBrooks, Evan B.; Wynne, Randolph H.; Thomas, Valerie A.; Blinn, Christine E.; Coulston, John W. (Institute of Electrical and Electronics Engineers (IEEE), 2014-06)One challenge to implementing spectral change detection algorithms using multitemporal Landsat data is that key dates and periods are often missing from the record due to weather disturbances and lapses in continuous coverage. This paper presents a method that utilizes residuals from harmonic regression over years of Landsat data, in conjunction with statistical quality control charts, to signal subtle disturbances in vegetative cover. These charts are able to detect changes from both deforestation and subtler forest degradation and thinning. First, harmonic regression residuals are computed after fitting models to interannual training data. These residual time series are then subjected to Shewhart X-bar control charts and exponentially weighted moving average charts. The Shewhart X-bar charts are also utilized in the algorithm to generate a data-driven cloud filter, effectively removing clouds and cloud shadows on a location-specific basis. Disturbed pixels are indicated when the charts signal a deviation from data-driven control limits. The methods are applied to a collection of loblolly pine (Pinus taeda) stands in Alabama, USA. The results are compared with stands for which known thinning has occurred at known times. The method yielded an overall accuracy of 85%, with the particular result that it provided afforestation/deforestation maps on a per-image basis, producing new maps with each successive incorporated image. These maps matched very well with observed changes in aerial photography over the test period. Accordingly, the method is highly recommended for on-the-fly change detection, for changes in both land use and land management within a given land use.
- Recent Remote Sensing Innovations and Future DirectionThomas, Valerie A.; Wynne, Randolph H.; Liknes, Greg C.; Derwin, Jill M.; Coulston, John W.; Brooks, Evan B.; Finco, Mark V.; Saxena, R.; Watson, Layne T.; Moisen, G. G.; Ruefenacht, Bonnie; Megown, Kevin (2017-10-25)
- Southern pine productivity: Effects of carbon dioxide increases and related predicted temperature and precipitation changesWynne, Randolph H.; Thomas, R. Quinn; Burkhart, Harold E.; Brooks, Evan B.; Thomas, Valerie A. (2017-05-16)Forest ecological forecasting results and decision support tools are now available to foresters in the southern United States.
- Using a hybrid demand-allocation algorithm to enable distributional analysis of land use change patternsBrooks, Evan B.; Coulston, John W.; Riitters, Kurt H.; Wear, David N. (2020-10-15)Future land use projections are needed to inform long-term planning and policy. However, most projections require downscaling into spatially explicit projection rasters for ecosystem service analyses. Empirical demand-allocation algorithms input coarse-level transition quotas and convert cells across the raster, based on a modeled probability surface. Such algorithms typically employ contagious and/or random allocation approaches. We present a hybrid seeding approach designed to generate a stochastic collection of spatial realizations for distributional analysis, by 1) randomly selecting a seed cell from a sample ofncells, then 2) converting patches of neighboring cells based on transition probability and distance to the seed. We generated a collection of realizations from 2001-2011 for the conterminous USA at 90m resolution based on varying the value ofn, then computed forest area by fragmentation class and compared the results with observed 2011 forest area by fragmentation class. We found that realizations based on values ofn <= 256 generally covered observed forest fragmentation at regional scales, for approximately 70% of assessed cases. We also demonstrate the potential of the seeding algorithm for distributional analysis by generating 20 trajectories of realizations from 2020-2070 from a single example scenario. Generating a library of such trajectories from across multiple scenarios will enable analysis of projected patterns and downstream ecosystem services, as well as their variation.
- Using Window Regression to Gap-Fill Landsat ETM+ Post SLC-Off DataBrooks, Evan B.; Wynne, Randolph H.; Thomas, Valerie A. (MDPI, 2018-09-20)The continued development of algorithms using multitemporal Landsat data creates opportunities to develop and adapt imputation algorithms to improve the quality of that data as part of preprocessing. One example is de-striping Enhanced Thematic Mapper Plus (ETM+, Landsat 7) images acquired after the Scan Line Corrector failure in 2003. In this study, we apply window regression, an algorithm that was originally designed to impute low-quality Moderate Resolution Imaging Spectroradiometer (MODIS) data, to Landsat Analysis Ready Data from 2014–2016. We mask Operational Land Imager (OLI; Landsat 8) image stacks from five study areas with corresponding ETM+ missing data layers, using these modified OLI stacks as inputs. We explored the algorithm’s parameter space, particularly window size in the spatial and temporal dimensions. Window regression yielded the best accuracy (and moderately long computation time) with a large spatial radius (a 7 × 7 pixel window) and a moderate temporal radius (here, five layers). In this case, root mean square error for deviations from the observed reflectance ranged from 3.7–7.6% over all study areas, depending on the band. Second-order response surface analysis suggested that a 15 × 15 pixel window, in conjunction with a 9-layer temporal window, may produce the best accuracy. Compared to the neighborhood similar pixel interpolator gap-filling algorithm, window regression yielded slightly better accuracy on average. Because it relies on no ancillary data, window regression may be used to conveniently preprocess stacks for other data-intensive algorithms.
- Window Regression for Image Stacks - Script and Sample DataBrooks, Evan B. (2014)