Browsing by Author "Brown, Michael C."
Now showing 1 - 17 of 17
Results Per Page
Sort Options
- Bridge Deck Service Life Prediction and CostsWilliamson, Gregory; Weyers, Richard E.; Brown, Michael C.; Sprinkel, Michael M. (Virginia Center for Transportation Innovation and Research, 2007-12-01)The service life of Virginia's concrete bridge decks is generally controlled by chloride-induced corrosion of the reinforcing steel as a result of the application of winter maintenance deicing salts. A chloride corrosion model accounting for the variable input parameters using Monte Carlo resampling was developed. The model was validated using condition surveys from 10 Virginia bridge decks built with bare steel. The influence of changes in the construction specifications of w/c = 0.47 and 0.45 and w/cm = 0.45 and a cover depth increase from 2 to 2.75 inches was determined. Decks built under the specification of w/cm = 0.45 (using slag or fly ash) and a 2.75 inch cover depth have a maintenance free service life of greater than 100 years, regardless of the type of reinforcing steel. Galvanized, MMFX-2, and stainless steel, in order of increasing reliability of a service life of greater than 100 years, will provide a redundant corrosion protection system. Life cycle cost analyses were conducted for polymer concrete and portland cement based overlays as maintenance activities. The most economical alternative is dependent on individual structure conditions. The study developed a model and computer software that can be used to determine the time to first repair and rehabilitation of individual bridge decks taking into account the time for corrosion initiation, time from initiation to cracking, and time for corrosion damage to propagate to a state requiring repair.
- Corrosion Protection Service Life of Epoxy-Coated Reinforcing Steel in Virginia Bridge DecksBrown, Michael C.; Weyers, Richard E.; Megan C. Wheeler (Virginia Center for Transportation Innovation and Research, 2003-09-01)The corrosion protection service life extension provided by epoxy-coated reinforcement (ECR) was determined by comparing ECR and bare steel bars from 10 Virginia bridge decks built between 1981 and 1995. The objective was to determine the corrosion protection service life time extension provided by ECR field specimens with various degrees of coating adhesion: disbonded, partially disbonded, and wholly bonded coatings. The size and length distributions of cracks in Virginia bridge decks were investigated to assess the frequency and severity of cracks. Correlation of cracks with chloride penetration was used to characterize the influence of cracking on deck deterioration. Cracks influence the rate of chloride penetration, but the frequency and width distributions of cracks indicate that cracks are not likely to shorten the overall service life of most bridge decks in Virginia. Altogether, 141 drilled cores, 102 mm (4 inches) in diameter, were employed in this study. For each of the decks built with ECR, 10 to 12 cores were drilled through a top reinforcing bar adjacent to the previous study core locations. In addition, approximately 3 cores were drilled through a top reinforcing bar at a surface crack location. Laboratory testing involved nondestructive monitoring using advanced electrochemical techniques to periodically assess the corrosion state of the steel bars during cyclic exposure to chloride-rich solution over 36 months of treatment. Time of corrosion initiation and time of cracking (where applicable), as well as chloride content of the concrete before and after treatment, were used in the analysis. Analysis of the epoxy coating after treatment showed the presence of micro cracks in the surface of some coatings, and moisture uptake and glass transition temperatures, as related to curing of the coatings, were investigated. Less than 25 percent of all Virginia bridge decks built under specifications in place since 1981 is projected to corrode sufficiently to require rehabilitation within 100 years, regardless of bar type. The corrosion service life extension attributable to ECR in bridge decks was found to be approximately 5 years beyond that of bare steel and, therefore, ECR is not a cost-effective method of corrosion prevention for bridge decks. Deleting the requirement for ECR in decks would save Virginia approximately $845,000 per year.
- Corrosion Testing and Modeling of Chloride-Induced Corrosion Deterioration of Concrete Bridge DecksGovindarajan Balakumaran, Soundar Sriram (Virginia Tech, 2012-03-01)Modeling of chloride-induced deterioration of bridge decks by using Fick's Second Law of diffusion was performed. The objective of this study is to select suitable input parameters for the model to estimate the service life of bridge decks. Five bridge decks, one in each of the following states, Virginia, Florida, New Jersey, New York, and Minnesota were evaluated. Data collection process involved visual inspections, damage surveys, corrosion testing including continuity, one-point resistivity, four-point resistivity, half-cell potentials, and three-electrode linear polarization, reinforcement cover depths, chloride samples. The Virginia bridge deck was built with epoxy-coated reinforcement as top reinforcement mat and black bar as the bottom mat. The Florida bridge is a segmental prestressed box girder structure built with black bar. The New Jersey bridge deck was overlaid with latex modified concrete. The New York bridge deck, which was built in 1990, is six inch concrete topping over prestressed adjacent box beams structure with epoxy-coated bar in the negative moment area. The Minnesota bridge was rebuilt in 1984. The deck was rebuilt with epoxy coated reinforcing steel in the top and bottom mats. The probabilistic Fickian model requires reinforcement cover depths, surface chloride concentration, chloride initiation concentration, and diffusion coefficients as input parameters. The chloride initiation concentration was input via parametric bootstrapping, while the other parameters were input as simple bootstrapping. Chloride initiation concentration was determined from the chloride concentration at the reinforcement bar depths. The modeling results showed that the deterioration of the Virginia bridge deck was corrosion controlled and the bridge will undergo increasingly severe damage in the future. Florida bridge deck is not undergoing corrosion and will not experience corrosion damage within 100 years. New Jersey bridge deck's service life has been most likely extended by the overlay. Deterioration of the New York bridge was not corrosion controlled, but was related to longitudinal cracking of the topping at match lines of adjacent box beams. Minnesota bridge deck is delaminated and contained a large number of cracks that should be included in service life modeling; otherwise the service life estimate is underestimated. In addition to service life corrosion performance modeling, analyses were conducted on the relationships and interrelations of resistivity, corrosion potential, corrosion current and chloride at the reinforcing bar depth.
- Effect of Environmental Conditions and Structural Design on Linear Cracking in Virginia Bridge DecksKeller, Wesley John (Virginia Tech, 2004-04-15)Chloride-induced corrosion of reinforcing steel is widely accepted as the primary cause of premature deterioration in concrete bridge decks (Brown, M.C., 2002). Since linear cracking in concrete cover can potentially accelerate chloride ingress to the depth of the reinforcing steel, there is reason to believe that severity of deck cracking can significantly influence the time to first repair and/or rehabilitation of the bridge deck. Surface width, orientation, and length of cracks in 38 Virginia bridge decks were investigated in order to characterize the general distribution of deck cracking in the commonwealth of Virginia. Crack data was correlated to structural/material design parameters and environmental exposure conditions in order to determine significant predictor-response relationships. The majority of surveyed bridge decks were divided into four classifications of deck type based on superstructure type and construction era, either 1968-1971 or 1984-1991. Surveyed bridge decks that did not fit into any of the four classifications were used to form more generalized subsets. These larger subsets were used to determine if significant influence factors could be translated to broader classifications of bridge decks. Transverse beam spacing, annual average daily truck traffic (AADTT), resistivity of the deck concrete, chloride exposure, and the percentage of concrete clear cover depths less than or equal to 38mm (1.5 in) were all determined to have a significant correlation with linear deck cracking.
- Framework for Rating Roadway Assets at the Corridor LevelVerhoeven, Jack George (Virginia Tech, 2010-06-30)The United States relies on its vast network of roadways to transport people, goods, and services across the nation. These roads need to be maintained to an acceptable level in order to effectively provide a safe, reliable, and efficient road. The use of infrastructure management systems (IMS) has aided in keeping an inventory of existing roads, identifying assets in need of repair, and assisting in allocating funds for maintenance, repair, and rehabilitation. The current practice in the United States has shown a lack of consistency in the way assets are rated in each state. Individual states have employed their own methodology for rating each asset type. This makes comparison of assets between states difficult. Several methods in use have provided a way to effectively rate an asset, but no method exists that can be used to compare ratings in different states. To successfully maintain the network of roads across the United States, a method to assess assets between states is necessary. Consistency between states in their data collection, rating calculation, and rating reporting are all necessary to identify poor sections of roadway. Another useful reporting item will be a condition rating of all the assets contained within a corridor. A corridor is a series of travel routes which move people between two major points of interest. By analyzing corridor level condition ratings, it will be possible to examine the overall condition of all the corridor sections across the nation and identify sections that need assistance in raising their condition. The objective of this thesis was to develop a framework for rating assets at the corridor level. The framework was developed to be applied to any asset contained within a roadway and allow the combination of individual asset ratings into a single corridor rating. The final methodology not only reports the overall corridor condition, but the functional and structural health of each individual asset, the rating of all of an asset type within a corridor, and performance indicators for individual items on a single asset. The methodology was tested using data provided by the Virginia Department of Transportation (VDOT) to test if the methodology would produce ratings similar to those in use. For the application methods were developed for two major roadway assets; pavements and bridges. The product of this thesis is a general framework which can be applied to roadway corridors to assess the overall condition of all the assets contained within the corridor's boundaries. It can be used in conjunction with an IMS to help improve and maintain the overall condition of the roads, which are critical to the United States. Without unification of condition rating methods into a single method it will never be possible to compare assets from every state in the nation.
- Influence of Bridge Deck Concrete Parameters on the Reinforcing Steel CorrosionBalakumaran, Soundar Sriram G. (Virginia Tech, 2010-04-28)Chloride induced corrosion of steel in concrete is one of the major forms of deterioration mechanisms found in reinforced concrete bridges. Early age corrosion damage reduces the lifespan of the bridges, which results in heavy economic losses. Research has been conducted to identify economic solutions for significantly delaying and/or preventing corrosion damage. Considering the amount of steel reinforcement used in bridge decks, the influence of as constructed parameters including clear spacing between top and bottom reinforcement bars, ratio of cathode to anode areas, and presence of stay-in-place forms on corrosion activity needs to be evaluated. The influence of the as constructed parameters have been studied using different corrosion assessment methods including resistivity, half-cell potential, linear polarization, chloride content, moisture content, and visual inspection. This study included the clear spacing distances between the anode and cathode of 51, 76, and 102 mm (2, 3, and 4-inch), number of cathodes as 1 and 2, and the presence and absence of stay-in-place forms. Data up to 15 months were taken from a previous study by Smolinski and integrated into the current study period of 35 to 45 months. A trend line may be established to illustrate the changes which took place over the missing time period, from approximately 15 to 35 months, since the specimens were maintained in controlled environment. Analysis of the data showed that there is a significant difference between the spacing values (2, 3, and 4-inch) through all forms of evaluations. Regarding the other parameters, no significant difference was identified. Variations in resistivity with increasing spacing, even when the water-cement ratio was kept at 0.50, maybe the result of the difference in unit consolidation between the clear spacing specimens. Thus, the corrosion mechanism observed in this study may be resistivity-controlled. Also, autopsy showed that corrosion on the top bars was in general agreement with the measured corrosion activity. The bottom bars had no visible corrosion and the chloride had not penetrated to the bottom bars, regardless of the separation distance between the top and bottom bars. For this laboratory study, the measurements showed that macrocell corrosion influence on the total corrosion was insignificant.
- Investigation of Long-Term Prestress Losses in Pretensioned High Performance Concrete GirdersWaldron, Christopher Joseph (Virginia Tech, 2004-11-16)Effective determination of long-term prestress losses is important in the design of prestressed concrete bridges. Over-predicting prestress losses results in an overly conservative design for service load stresses, and under-predicting prestress losses, can result in cracking at service loads. Creep and shrinkage produce the most significant time-dependent effect on prestress losses, and research has shown that high performance and high strength concretes (HPC and HSC) exhibit less creep and shrinkage than conventional concrete. For this reason, the majority of traditional creep and shrinkage models and methods for estimating prestress losses, over-predict the prestress losses of HPC and HSC girders. Nine HPC girders, with design compressive strengths ranging from 8,000 psi to 10,000 psi, and three 8,000 psi lightweight HPC (HPLWC) girders were instrumented to determine the changes in strain and prestress losses. Several creep and shrinkage models were used to model the instrumented girders. For the HPLWC, each model over-predicted the long-term strains, and the Shams and Kahn model was the best predictor of the measured strains. For the normal weight HPC, the models under-estimated the measured strains at early ages and over-estimated the measured strains at later ages, and the B3 model was the best-predictor of the measured strains. The PCI-BDM model was the most consistent model across all of the instrumented girders. Several methods for estimating prestress losses were also investigated. The methods correlated to high strength concrete, the PCI-BDM and NCHRP 496 methods, predicted the total losses more accurately than the methods provided in the AASHTO Specifications. The newer methods over-predicted the total losses of the HPLWC girders by no more than 8 ksi, and although they under-predicted the total losses of the normal weight HPC girders, they did so by less than 5 ksi.
- Investigation of parameters governing the corrosion protection efficacy of fusion bonded epoxy coatingsRamniceanu, Andrei (Virginia Tech, 2007-05-18)The primary cause of corrosion in transportation structures is due to chlorides which are applied to bridge decks as deicing salts. The direct cost of corrosion damage to the country's infrastructure is approximately $8.3 billion per year. One of the most common corrosion abatement methods in the United States is the barrier protection implemented through the application of fusion bonded epoxy coatings. The purpose of this study was to investigate various coating and exposure parameters to determine their effects on the corrosion of reinforcing steel. The parameters investigated were: chloride content at the bar depth, coated bar corroded area, corrosion product color under the coating, epoxy coating adhesion, coating color, coating damage (holidays and holes), coating thickness, TGA, DSC and EDS analysis and SEM coating cracking investigation. This was accomplished by testing new coated bar specimens as well as specimens extracted from 27 bridge decks located in Virginia. This study demonstrated the following: The extracted ECR coating samples presented extensive cracking compared to the new ECR samples in which the coating cracking was limited to only one sample. The DSC results showed that both the extracted samples as well as new samples are not fully cured during the manufacturing process. The coating degree of curing data also showed that the bars are insufficiently and unevenly heated prior to the application of the powder coating. Additionally, the samples investigated presented significant permanent adhesion loss with little or no epoxy coating residue present on the bar surface, while the EDS analysis showed that once adhesion is lost, corrosion will proceed unimpeded under the coating even in the absence of chlorides. The parameters that presented a direct correlation with the observed corrosion activity were the number of holidays and the number of damaged areas per unit length of bar. This indicates that the passivation of the bare steel exposed to the concrete pore solution at the breaches in the epoxy coating is not the same as a bare bar under similar exposure conditions allowing it instead to corrode at lower concrete chloride concentration levels than bare bars. The results also show a distinct loss of quality control in the handling and possibly storage of new coated bars. The new ECR samples had significantly higher damage density than the samples extracted from concrete even though the coating is damaged during the placement of the concrete, while there was no change in the number of holidays and cure condition. Finally, the data presented further evidence that while limited, the non-destructive corrosion assessment methods available for bare steel reinforced structures may also be used on ECR reinforced structures. In particular, the corrosion rate measurements correlated reasonably well with the chloride concentrations at bar level. This indicates that while the chlorides may not influence the corrosion activity under the coating, they do influence the corrosion activity at breaches in the coating.
- Lateral Load Distribution and Deck Design Recommendations for the Sandwich Plate System (SPS) in Bridge ApplicationsHarris, Devin K. (Virginia Tech, 2007-10-29)The deterioration of the nation's civil infrastructure has prompted the investigation of numerous solutions to offset the problem. Some of these solutions have come in the form of innovative materials for new construction, whereas others have considered rehabilitation techniques for repairing existing infrastructure. A relatively new system that appears capable of encompassing both of these solution methodologies is the Sandwich Plate System (SPS), a composite bridge deck system that can be used in both new construction or for rehabilitation applications. SPS consists of steel face plates bonded to a rigid polyurethane core; a typical bridge application utilizes SPS primarily as a bridge deck acting compositely with conventional support girders. As a result of this technology being relatively new to the bridge market, design methods have yet to be established. This research aims to close this gap by investigating some of the key design issues considered to be limiting factors in implementation of SPS. The key issues that will be studied include lateral load distribution, dynamic load allowance and deck design methodologies. With SPS being new to the market, there has only been a single bridge application, limiting the investigations of in-service behavior. The Shenley Bridge was tested under live load conditions to determine in-service behavior with an emphasis on lateral load distribution and dynamic load allowance. Both static and dynamic testing were conducted. Results from the testing allowed for the determination of lateral load distribution factors and dynamic load allowance of an in-service SPS bridge. These results also provided a means to validate a finite element modeling approach which would could as the foundation for the remaining investigations on lateral load distribution and dynamic load allowance. The limited population of SPS bridges required the use of analytical methods of analysis for this study. These analytical models included finite element models and a stiffened plate model. The models were intended to be simple, but capable of predicting global response such as lateral load distribution and dynamic load allowance. The finite element models are shown to provide accurate predictions of the global response, but the stiffened plate approach was not as accurate. A parametric investigation, using the finite element models, was initiated to determine if the lateral load distribution characteristics and vibration response of SPS varied significantly from conventional systems. Results from this study suggest that the behavior of SPS does differ somewhat from conventional systems, but the response can be accommodated with current AASHTO LRFD bridge design provisions as a result of their conservativeness. In addition to characterizing global response, a deck design approach was developed. In this approach the SPS deck was represented as a plate structure, which allowed for the consideration of the key design limit states within the AASHTO LRFD specification. Based on the plate analyses, it was concluded that the design of SPS decks is stiffness-controlled as limited by the AASHTO LRFD specification deflection limits for lightweight metal decks. These limits allowed for the development of a method for sizing SPS decks to satisfy stiffness requirements.
- Linear Cracking in Bridge DecksBalakumaran, Soundar S.G.; Weyers, Richard E.; Brown, Michael C. (Virginia Transportation Research Council, 2018-03)Concrete cracking in bridge decks remains an important issue relative to deck durability. Cracks can allow increased penetration of chlorides, which can result in premature corrosion of the reinforcing steel and subsequent spalling of the concrete deck. Although it is understood that the service life of bridge decks is affected by concrete cracking, the degree to which cracking affects service life is unknown. Crack repairs may be expensive, and only a few state transportation agencies have developed effective decision-making tools to support engineering decisions about whether and how to repair cracks in bridges. To understand how various factors affect the formation of cracks and to comprehend how cracks influence the performance of bridge decks, a comprehensive literature review was performed of publications from the early 1970s to the present. With findings from more than 45 years of research, the influences of about 30 factors were included in the literature review. In this study, 37 highway bridges in Virginia were selected on the basis of environmental exposure, geographic location, traffic conditions, and construction era. Ten decks with ordinary portland cement (OPC) concrete with a water–cementitious material (w/c) ratio of 0.47 with uncoated reinforcement were built from 1968 through 1971, and 27 decks with concrete with a w/c ratio of 0.45 with epoxy-coated reinforcement were built from 1984 through 1991. Of the newer 27 decks, 11 had concrete with supplementary cementitious material (SCM) such as fly ash and slag. The study included field surveys, sampling, and extensive data collection with regard to the decks. In addition, a laboratory study of the collected samples was conducted to understand the material properties and to determine the chloride contents. Statistical methods were used to analyze the collected data and to form regression models for prediction of crack influence on chloride diffusion. The increase in chloride diffusion through cracks when compared to that of corresponding uncracked locations was statistically significant. No strong correlation was found between surface crack width and chloride diffusion; however, a significant correlation was found between crack depth and chloride diffusion. To understand the effects of cracks on the durability of the structures, service life was estimated using a probabilistic chloride diffusion model based on Fick’s second law of diffusion. The estimated service life of the decks with concrete with SCM was around 100 years but only if no cracks were present. The presence of cracks affected the service life significantly. With higher crack frequencies, the service life plunged to the levels of decks built with OPC concrete, which was significantly lower to begin with. The service life of decks built with OPC concrete was not significantly affected by the presence of cracks, primarily because the high permeability of OPC concrete, with or without the presence of cracks, results in a shorter service life for OPC concrete decks. Time to corrosion initiation for corrosion-resistant reinforcing bars, ASTM A1035 (VDOT Class I reinforcement) and ASTM A955 (VDOT Class III reinforcement), was estimated, and the service lives were much longer compared to those of the decks in this study constructed with other types of reinforcement. Implementation guidance for quality assurance of newly built bridge decks with modern concrete mixtures and corrosion-resistant reinforcement and for maintenance of existing bridge decks was developed based on the study results.
- Parameters Governing the Corrosion Protection Efficiency of Fusion-Bonded Epoxy Coatings on Reinforcing SteelAndrei Ramniceanu; Weyers, Richard E.; Brown, Michael C.; Sprinkel, Michael M. (Virginia Center for Transportation Innovation and Research, 2008-01-01)The purpose of this study was to investigate various epoxy coating and exposure parameters to determine their effects on the corrosion of reinforcing steel. The parameters investigated were: chloride content at the bar depth, coated bar corroded area, corrosion product color under the coating, epoxy coating adhesion, coating color, coating damage (holidays and holes), coating thickness, TGA, DSC and EDS analysis and SEM coating cracking investigation. This study demonstrated that the ECR coating samples extracted from concrete exhibited extensive cracking compared to the new ECR samples in which the coating cracking was limited to only one sample. The coating cracking correlated with the amount of chloride at bar level, residual adhesion of the epoxy to the steel surface, and the percent moisture in the coating. The coating cracking is also related to the change in color of the epoxy and indicates that the epoxy coating degradation in concrete influences the surface condition of the coating. The DSC results showed that both the extracted epoxy coating samples as well as new samples are not fully cured during the manufacturing process. Additionally, the extracted epoxy coated samples investigated presented significant permanent adhesion loss with little or no epoxy coating residue present on the bar surface, while the EDS analysis showed that once adhesion is lost, corrosion will proceed unimpeded under the coating even in the absence of chlorides. The parameters that presented a direct correlation with the observed corrosion activity were the number of holidays and the number of damaged areas per unit length of bar. The results also show a distinct loss of quality control in the handling and possibly storage of new coated bars. The new ECR samples had significantly higher damage density than the samples extracted from concrete, while there was no change in the number of holidays and cure condition.
- Parameters Influencing the Corrosion Protection Service Life of Epoxy Coated Reinforcing Steel in Virginia Bridge DecksWheeler, Megan Caroline (Virginia Tech, 2003-12-09)This study is an evaluation of epoxy coated reinforcing steel (ECR) and its ability to effectively provide corrosion protection in reinforced concrete highway bridge decks. An analysis was conducted on 10 bridge decks built in the state of Virginia between the years 1981 and 1995. A total of 141 cores containing either ECR or bare steel were evaluated. A chloride solution was applied to the surface on a weekly cycle (for a total duration of 3.06 years) and a nondestructive electrochemical testing was performed on each core on a monthly cycle. Cores were also inspected for surface cracks, the thermal properties of the epoxy coating, and the concrete conditions at bar depth. The concrete was tested for saturation percentages, diffusion coefficients, and chloride contents, while the epoxy was tested for its glass transition temperature, moisture content, and amount of surface cracking. The results indicate that the best predictor for estimating the times to corrosion initiation and cracking is the amount of chlorides present in the concrete encasing the ECR. The presence of chloride ions will have a determining effect on corrosion regardless of the epoxy coating condition. As a result, it is likely that ECR is not the solution to corrosion prevention and it is recommended that closer attention be given to improving concrete conditions that reduce the diffusion of chloride ions. The conclusion that ECR is an unreliable corrosion prevention method is in agreement with the results of previous studies.
- Service Life Modeling of Virginia Bridge DecksWilliamson, Gregory Scott (Virginia Tech, 2007-03-20)A model to determine the time to the End of Functional Service Life (EFSL) for concrete bridge decks in Virginia was developed. The service life of Virginia bridge decks is controlled by chloride-induced corrosion of the reinforcing steel. Monte Carlo resampling techniques were used to integrate the statistical nature of the input variables into the model. This is an improvement on previous deterministic models in that the effect of highly variable input parameters is reflected in the service life estimations. The model predicts the time required for corrosion to initiate on 2% of the reinforcing steel in a bridge deck and then a corrosion propagation time period, determined from empirical data, is added to estimate the EFSL for a given bridge deck or set of bridge decks. Data from 36 Virginia bridge decks was collected in order to validate the service life model as well as to investigate the effect of bridge deck construction specification changes. The bridge decks were separated into three distinct groups: 10 bare steel reinforcement decks â 0.47 water/cement (w/c), 16 Epoxy-Coated Reinforcement (ECR) decks â 0.45 w/c, and 10 ECR decks â 0.45 w/(c+pozzolan). Using chloride titration data and cover depth measurements from the sampled bridge decks and chloride corrosion initiation values determined from the literature for bare steel, service life estimates were made for the three sets of bridge decks. The influence of the epoxy coating on corrosion initiation was disregarded in order to allow direct comparisons between the three sets as well as to provide conservative service life estimates. The model was validated by comparing measured deterioration values for the bare steel decks to the estimated values from the model. A comparison was then made between the three bridge deck sets and it was determined that bridge decks constructed with a 0.45 w/(c+p) will provide the longest service life followed by the 0.47 w/c decks and the 0.45 w/c decks, respectively. From this it can be inferred that the addition of pozzolan to the concrete mix will improve the long-term durability of a bridge deck while a reduction in w/c appears to be of no benefit.
- Shear Strength of Full-Scale Prestressed Lightweight Concrete Girders with Composite DecksKassner, Bernard Leonard (Virginia Tech, 2013-01-21)Although design codes have accepted lightweight concrete as a suitable structural material for nearly 50 years, there is still a good deal of uncertainty as to how to calculate the strength of this material when designing for shear in beams. Design codes tend to penalize lightweight concrete due to its lower tensile strength and smoother interface along the shear cracks. In this study, there were twelve tests on six full-scale, prestressed girders with composite decks designed to provide answers to some of those uncertainties. The variables considered were concrete density, concrete compressive strength, effective shear depth, shear span-to-effective depth ratio, the amount of shear reinforcement, and the composite cross-sectional area. Results show that the sand-lightweight concrete girders exceeded the expected shear strength according to the 2010 AASHTO LRFD Bridge Specifications. Compared to normal weight concrete, sand-lightweight concrete performed reasonably well, and therefore, does not need a lightweight modifier when designing for shear. However, a reliability analysis of the sand-lightweight girders in this study as well as twelve previous experiments indicate that there should be two different strength reduction factors for the shear design of sand-lightweight concrete depending on which shear design procedures are used in the 2010 AASHTO LRFD Bridge Design Specifications. For the General Procedure as well as the guidelines outline in Appendix B5, the strength reduction factor should be increased from 0.70 to 1.00. For the Simplified Procedure, that factor should be 0.75.
- Structural load testing and flexure analysis of the Route 701 Bridge in Louisa County, VirginiaCousins, Thomas E.; Lucas, Jeremy L.; Brown, Michael C.; Stephen R. Sharp; Lane, D. Stephen (Virginia Center for Transportation Innovation and Research, 2004-06-01)A continuous slab bridge in Louisa County, Virginia, on Route 701 developed a planar horizontal crack along the length of all three spans. This project was designed to determine if the current load rating of the bridge could be raised and to document the behavior and stiffness of the bridge to serve as a benchmark for possible future tests, which may determine if there is progressive damage attributable to crack growth. These objectives were accomplished through field tests performed in November 2003. One truck (loaded to three different weights) was used to perform static and dynamic tests on the bridge, and the truck was oriented in three test lanes. Vertical displacement gages (deflectometers) attached to the underside of the bridge slab were used to measure deflections during the truck passes. The recorded deflections were analyzed and normalized to document the behavior of the bridge. The values were also compared to estimated design values in accordance with the AASHTO Standard Specifications for Highway Bridges. Under the testing loads, the bridge behaved elastically, and thus raising the load rating of the bridge was considered safe. The deflections and process are presented to allow comparisons with future tests to determine if there is progressive damage to the bridge attributable to crack growth.
- Structural Load Testing and Flexure Analysis of the Route 701 Bridge in Louisa County, Virginia: Supplemental ReportLucas, Jeremy L.; Cousins, Thomas E.; Brown, Michael C. (Virginia Center for Transportation Innovation and Research, 2006-02-01)A continuous slab bridge in Louisa County, Virginia, on Route 701 developed a planar horizontal crack along the length of all three spans. This project was designed to determine if the current 12-ton posted load restriction of the bridge (instituted in January 2002) could be raised and to determine if the horizontal crack causes degradation in the structural integrity, specifically stiffness, over time. These objectives were accomplished through field tests performed in November 2003 and October 2004. One truck (loaded to three different weights) was used to perform static and dynamic tests on the bridge, and the truck was oriented in three test lanes. Vertical displacement sensors, or deflectometers, attached to the underside of the bridge slab were used to measure deflections during truck passes. The recorded deflections were analyzed and normalized to document the current behavior of the bridge. The 2003 values were compared to estimated design values in accordance with the AASHTO Standard Specifications for Highway Bridges. Under the testing loads, the bridge behaved elastically, and thus raising the load rating of the bridge to 27 tons was considered safe. Normalized deflections from both years were compared to determine if there was progressive damage to the bridge attributable to crack growth. The researchers concluded that no degradation of the stiffness of the bridge occurred over the last year of service. Carrying out the recommendation of this report to remove the posting that restricts loading of the structure will not incur any significant cost. The benefit of removing the posting would be that trucks weighing more than 12 tons, but not exceeding the legal limit, could cross the structure. This would allow the Virginia Department of Transportation to defer superstructure replacement, at an estimated cost of $350,000, thus freeing up funds to address more pressing needs.
- Summary Report on the Performance of Epoxy-Coated Reinforcing Steel in VirginiaWeyers, Richard E.; Sprinkel, Michael M.; Brown, Michael C. (Virginia Center for Transportation Innovation and Research, 2006-06-01)From 1992 to 2006, the Virginia Transportation Research Council and its contract researchers conducted a long-term systematic series of investigations to evaluate the corrosion protection effectiveness of epoxy-coated reinforcement (ECR) and to identify and recommend the best and most cost-effective corrosion protection system for Virginia bridge decks. This report summarizes this research and subsequent efforts to implement alternative reinforcement. The work was conducted, and is reported, in this general order: review of historical performance of ECR, ECR performance in solutions and concrete, and preliminary field investigations; investigation of field performance of bridge decks built with ECR; assessment of alternative corrosion protection methods; development of probabilistic service life models for bridge decks and laboratory assessment of ECR cores extracted from bridge decks to determine service life extension; efforts to implement alternative reinforcement. The series of studies demonstrated that the epoxy coating on ECR naturally degrades in the highly alkaline moist environment within concrete. The subsequent loss of bond, coupled with the inevitable flaws in the coating induced by construction, leads to an estimated service life benefit of ECR of as little as 3 to 5 years. Further, non-critical decks, beams, and substructure elements not exposed to marine environments, particularly on secondary and rural routes, can be cost-effectively constructed and maintained using low-permeability concrete and black reinforcing bar. However, because the Federal Highway Administration requires the use of corrosion-resistant reinforcement, and because ECR cannot provide adequate corrosion protection for structures designed for a 100-year+ service life as currently recommended by FHWA, the report recommends that the Virginia Department of Transportation amend its specifications regarding the use of ECR to require the use of corrosion-resistant metallic reinforcing bars such as MMFX2, stainless steel clad, and solid stainless steel.