Browsing by Author "Brunson, Jason C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Reaction-controlled diffusion: Monte Carlo simulationsReid, Beth A.; Täuber, Uwe C.; Brunson, Jason C. (American Physical Society, 2003-10)We study the coupled two-species nonequilibrium reaction-controlled diffusion model introduced by Trimper [Phys. Rev. E 62, 6071 (2000)] by means of detailed Monte Carlo simulations in one and two dimensions. Particles of type A may independently hop to an adjacent lattice site, provided it is occupied by at least one B particle. The B particle species undergoes diffusion-limited reactions. In an active state with nonzero, essentially homogeneous B particle saturation density, the A species displays normal diffusion. In an inactive, absorbing phase with exponentially decaying B density, the A particles become localized. In situations with algebraic decay rho(B)(t)similar tot(B)(-alpha), as occurring either at a nonequilibrium continuous phase transition separating active and absorbing states, or in a power-law inactive phase, the A particles propagate subdiffusively with mean-square displacement <(x) over right arrow (t)(A)(2)>similar tot(A)(1-alpha). We find that within the accuracy of our simulation data, alpha(A)approximate toalpha(B) as predicted by a simple mean-field approach. This remains true even in the presence of strong spatiotemporal fluctuations of the B density. However, in contrast with the mean-field results, our data yield a distinctly non-Gaussian A particle displacement distribution n(A)((x) over right arrow ,t) that obeys dynamic scaling and looks remarkably similar for the different processes investigated here. Fluctuations of effective diffusion rates cause a marked enhancement of n(A)((x) over right arrow ,t) at low displacements \x (->) over right arrow\, indicating a considerable fraction of practically localized A particles, as well as at large traversed distances.
- Reaction-controlled diffusion: Monte Carlo simulationsReid, Beth A.; Täuber, Uwe C.; Brunson, Jason C. (American Physical Society, 2003-10-01)We study the coupled two-species non-equilibrium reaction-controlled diffusion model introduced by Trimper et al. [Phys. Rev. E 62, 6071 (2000)] by means of detailed Monte Carlo simulations in one and two dimensions. Particles of type A may independently hop to an adjacent lattice site provided it is occupied by at least one B particle. The B particle species undergoes diffusion-limited reactions. In an active state with nonzero, essentially homogeneous B particle saturation density, the A species displays normal diffusion. In an inactive, absorbing phase with exponentially decaying B density, the A particles become localized. In situations with algebraic decay ρB(t) ∼ t−∞B, as occuring either at a non-equilibrium continuous phase transition separating active and absorbing states, or in a power-law inactive phase, the A particles propagate subdiffusively with mean-square displacement ⟨→x(t)2A⟩~t1-∞A. We find that within the accuracy of our simulation data, αA ≈ αB as predicted by a simple mean-field approach. This remains true even in the presence of strong spatio-temporal fluctuations of the B density. However, in contrast with the mean-field results, our data yield a distinctly non-Gaussian A particle displacement distribution nA(→x, t) that obeys dynamic scaling and looks remarkably similar for the different processes investigated here. Fluctuations of effective diffusion rates cause a marked enhancement of nA(→x, t) at low displacements |→x|, indicating a considerable fraction of practically localized A particles, as well as at large traversed distances.