Browsing by Author "Bryant, Ray B."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Enhanced Denitrification Bioreactors Hold Promise for Mid-Atlantic Ditch DrainageChristianson, L. E.; Collick, A. S.; Bryant, Ray B.; Rosen, T.; Bock, Emily; Allen, A. L.; Kleinman, P. J. A.; May, E. B.; Buda, A. R.; Robinson, J.; Folmar, G. J.; Easton, Zachary M. (2017-12)There is strong interest in adapting denitrifying bioreactors to mid-Atlantic drainage systems to help address Chesapeake Bay water quality goals. Three ditch drainage-oriented bioreactors were constructed in 2015 in Maryland to evaluate site-specific design and installation concerns and nitrate (NO3-N) removal. All three bioreactor types removed NO3-N, as measured by load and/or concentration reduction, showing promise for denitrifying bioreactors in the mid-Atlantic's low gradient Coastal Plain landscape. The ditch diversion bioreactor (25% NO3-N load reduction; 0.97 g NO3-N removed m(-3) d(-1)) and the sawdust denitrification wall adjacent to a ditch (> 90% NO3-N concentration reduction; 1.9-2.9 g NO3-N removed m(-3) d(-1)) had removal rates within range of the literature. The in-ditch bioreactor averaged 65% NO3-N concentration reduction, but sedimentation is expected to be one of the biggest challenges. A robust water balance is critical for future assessment of bioreactors' contribution to water quality improvement in low gradient mid-Atlantic landscapes.
- Improved Simulation of Edaphic and Manure Phosphorus Loss in SWATCollick, Amy S.; Veith, Tamie L.; Fuka, Daniel R.; Kleinman, Peter J. A.; Buda, Anthony R.; Weld, Jennifer L.; Bryant, Ray B.; Vadas, Peter A.; White, Mike J.; Harmel, R. Daren; Easton, Zachary M. (2016-07)Watershed models such as the Soil Water Assessment Tool (SWAT) and the Agricultural Policy Environmental EXtender (APEX) are widely used to assess the fate and transport of agricultural nutrient management practices on soluble and particulate phosphorus (P) loss in runoff. Soil P-cycling routines used in SWAT2012 revision 586, however, do not simulate the short-term effects of applying a concentrated source of soluble P, such as manure, to the soil surface where it is most vulnerable to runoff. We added a new set of soil P routines to SWAT2012 revision 586 to simulate surface-applied manure at field and subwatershed scales within Mahantango Creek watershed in south-central Pennsylvania. We corroborated the new P routines and standard P routines in two versions of SWAT (conventional SWAT, and a topographically driven variation called TopoSWAT) for a total of four modeling "treatments". All modeling treatments included 5 yr of measured data under field-specific, historical management information. Short-term "wash off" processes resulting from precipitation immediately following surface application of manures were captured with the new P routine whereas the standard routines resulted in losses regardless of manure application. The new routines improved sensitivity to key factors in nutrient management (i.e., timing, rate, method, and form of P application). Only the new P routines indicated decreases in soluble P losses for dairy manure applications at 1, 5, and 10 d before a storm event. The new P routines also resulted in more variable P losses when applying manure versus commercial fertilizer and represented increases in total P losses, as compared with standard P routines, with rate increases in dairy manure application (56,000 to 84,000 L ha(-1)). The new P routines exhibited greater than 50% variation among proportions of organic, particulate, and soluble P corresponding to spreading method. In contrast, proportions of P forms under the standard P routines varied less than 20%. Results suggest similar revisions to other agroecosystem watershed models would be appropriate.
- Pedogenic Carbonates and Radiocarbon Isotopes of Organic Carbon at Depth in the Russian ChernozemMikhailova, Elena A.; Bryant, Ray B.; Galbraith, John M.; Wang,Yang; Post, Christopher J.; Khokhlova, Olga S.; Schlautman, Mark A.; Cope, Michael P.; Shen, Zhixiong (MDPI, 2018-12-05)Conversion of native grasslands to agricultural sites has resulted in remarkable changes in soil carbon at depth, but its impact on soil diagnostic horizons is unknown. This study was conducted to radiocarbon date the soil organic carbon (SOC) and quantify pedogenic carbonates in the Russian Chernozem at depth at three sites: a native grassland field (not cultivated for at least 300 years), an adjacent 50-year continuous fallow field in the V.V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia (UNESCO—MAB Biosphere Reserve), and a cropland in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as Fine-silty, mixed, frigid Pachic Hapludolls (Haplic Chernozem). The radiocarbon age (14C date, y BP) of SOC was highly variable: in the native grassland field, it varied from post-bomb (A-horizon) to 8011 ± 54 y BP (C-horizon); in the continuous fallow, it varied from 1569 ± 41 y BP (Ap-horizon) to 11,380 ± 180 y BP (C1-horizon); and in the cropland, it varied from 1055 ± 38 y BP (Ap-horizon) to 11,805 ± 68 y BP (Ck-horizon). Cultivation resulted in morphological/diagnostic changes in the soil profile (conversion of A to Ap; conversion of Bw to Bk horizon) over a 50-year period. These changes are supported by radiocarbon dating of SOC and pedogenic carbonate distribution within the soil profile. The proportion of pedogenic carbonates was highly variable: in the native grassland, it was 27% (C-horizon); in the continuous fallow, it varied from 53% (Bk1-horizon) to 72% (C2-horizon); and in the cropland, it varied from 85% (A-horizon) to 10% (Ck-horizon). The radiocarbon age differences with depth among the soils reflect changes in the soil carbon dynamics resulting from cultivation.
- Phosphorus and the Chesapeake Bay: Lingering Issues and Emerging Concerns for AgricultureKleinman, Peter J. A.; Fanelli, Rosemary M.; Hirsch, Robert M.; Buda, Anthony R.; Easton, Zachary M.; Wainger, Lisa A.; Brosch, Chris; Lowenfish, Martin; Collick, Amy S.; Shirmohammadi, Adel; Boomer, Kathy; Hubbart, Jason A.; Bryant, Ray B.; Shenk, Gary W. (2019-09)Hennig Brandt's discovery of phosphorus (P) occurred during the early European colonization of the Chesapeake Bay region. Today, P, an essential nutrient on land and water alike, is one of the principal threats to the health of the bay. Despite widespread implementation of best management practices across the Chesapeake Bay watershed following the implementation in 2010 of a total maximum daily load (TMDL) to improve the health of the bay, P load reductions across the bay's 166,000-km(2) watershed have been uneven, and dissolved P loads have increased in a number of the bay's tributaries. As the midpoint of the 15-yr TMDL process has now passed, some of the more stubborn sources of P must now be tackled. For nonpoint agricultural sources, strategies that not only address particulate P but also mitigate dissolved P losses are essential. Lingering concerns include legacy P stored in soils and reservoir sediments, mitigation of P in artificial drainage and stormwater from hotspots and converted farmland, manure management and animal heavy use areas, and critical source areas of P in agricultural landscapes. While opportunities exist to curtail transport of all forms of P, greater attention is required toward adapting P management to new hydrologic regimes and transport pathways imposed by climate change.