Browsing by Author "Bryce, James Matthew"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Applying Pavement Life Cycle Assessment Results to Enhance Sustainable Pavement Management Decision MakingBryce, James Matthew (Virginia Tech, 2014-06-27)Sustainable pavement management implies maintaining acceptable condition of pavements while also considering the tradeoff between cost, environmental impacts and social impacts of pavement investments. Typical pavement management practices only consider economic considerations, and environmental mitigation techniques are employed after the selection of the maintenance action is complete. This dissertation presents a series of papers that demonstrate the impact of decision making on the environmental impact of the pavements both at the project and network levels of pavement management. An analysis was conducted of two models that relate pavement properties to vehicle rolling resistance and fuel consumption. These models were used, along with other tools to evaluate the impact of including the use phase of a pavement into pavement lifecycle assessments. A detailed project level lifecycle assessment was conducted, and it was found that the vehicles on the pavement during the use phase contribute the most to environmental pollutants by a significant margin over other phases of the lifecycle. Thus, relatively small improvements in the factors which contribute to rolling resistance may significantly influence the environmental impacts of the pavement. Building on this, a network level lifecycle assessment method was proposed to probabilistically quantify energy consumption for a given set of expected maintenance actions. It was shown that, although maintenance actions require a certain amount of energy consumption, this energy can be offset by improved road conditions leading to reduced rolling resistance. However, this tradeoff of reduced energy consumption also includes increased costs for a given network condition. In other words, the lowest energy consumption values did not tend to fall along the line defined by minimizing the cost divided by the pavement condition. In order to demonstrate how this tradeoff should be addressed, a novel decision analysis framework was developed, and implemented on a specific pavement network. Finally, a survey of transportation professionals was evaluated to determine their optimal points within the solution space defined by minimizing costs and energy consumption while maximizing pavement condition. It was found that the solution space could be greatly reduced by implementing their responses using the proposed decision analysis framework.
- A Pavement Structural Capacity Index for Use in Network-level Evaluation of Asphalt PavementsBryce, James Matthew (Virginia Tech, 2012-01-18)The objective of this research was to develop a structural index for use in network-level pavement evaluation, which facilitates the inclusion of the pavements structural condition in many pavement management applications. The primary goal of network-level pavement management is to maintain an acceptable condition of the pavements within the network using available, and often limited, resources. Pavement condition is described in terms of functional and structural condition, and the current widespread practice is to only consider the functional condition during network-level evaluation. This practice results in treatments that are often under-designed or over-designed when considered in more detail at the project-level. The disagreement may be reduced by considering the structural capacity of the pavements as part of the network-level decision process. This research was conducted by identifying various structural indices, choosing an appropriate index, and then applying data from the state of Virginia to modify the index and show example application for the index. It was concluded that the Modified Structural Index best met the research objectives. Project-level and network level data were used to conduct a sensitivity analysis on the index, and example applications were presented. The results indicated that the inclusion of the Modified Structural Index into the network-level decision process minimized the errors between network-level and project-level decisions, when compared to the current network-level decision making process. Furthermore, the Modified Structural Index could be used in various pavement management applications, such as network-level structural screening, and developing structural performance measures.