Browsing by Author "Burrows, J. P."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES)Kopacz, M.; Jacob, D. J.; Fisher, J. A.; Logan, J. A.; Zhang, L.; Megretskaia, I. A.; Yantosca, R. M.; Singh, K.; Henze, Daven K.; Burrows, J. P.; Buchwitz, M.; Khlystova, I.; McMillan, W. W.; Gille, J. C.; Edwards, D. P.; Eldering, A.; Thouret, V.; Nedelec, P. (Copernicus Publications, 2010)We combine CO column measurements from the MOPITT, AIRS, SCIAMACHY, and TES satellite instruments in a full-year (May 2004-April 2005) global inversion of CO sources at 4 degrees x 5 degrees spatial resolution and monthly temporal resolution. The inversion uses the GEOS-Chem chemical transport model (CTM) and its adjoint applied to MOPITT, AIRS, and SCIAMACHY. Observations from TES, surface sites (NOAA/GMD), and aircraft (MOZAIC) are used for evaluation of the a posteriori solution. Using GEOS-Chem as a common intercomparison platform shows global consistency between the different satellite datasets and with the in situ data. Differences can be largely explained by different averaging kernels and a priori information. The global CO emission from combustion as constrained in the inversion is 1350 Tg a(-1). This is much higher than current bottom-up emission inventories. A large fraction of the correction results from a seasonal underestimate of CO sources at northern mid-latitudes in winter and suggests a larger-than-expected CO source from vehicle cold starts and residential heating. Implementing this seasonal variation of emissions solves the long-standing problem of models underestimating CO in the northern extratropics in winter-spring. A posteriori emissions also indicate a general underestimation of biomass burning in the GFED2 inventory. However, the tropical biomass burning constraints are not quantitatively consistent across the different datasets.