Browsing by Author "Cai, Rongman"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- New hypotheses about the origin of Pseudomonas syringae crop pathogensCai, Rongman (Virginia Tech, 2012-05-02)Pseudomonas syringae is a common foliar plant pathogenic bacterium that causes diseases on many crop plants. We hypothesized that today's highly virulent P. syringae crop pathogens with narrow host range might have evolved after the advent of agriculture from ancestral P. syringae strains with wide host range that were adapted to mixed plant communities. The model tomato and Arabidopsis pathogen P. syringae pv. tomato (Pto) DC3000 and its close relatives isolated from crop plants were thus selected to unravel basic principles of host range evolution by applying molecular evolutionary analysis and comparative genomics approaches. Phylogenetic analysis was combined with host range tests to reconstruct the host range of the most recent common ancestor of all analyzed strains isolated from crop plants. Even though reconstruction of host range of the most recent common ancestor of all analyzed strains was not conclusive, support for this hypothesis was found in some sub-groups of strains. The focus of my studies then turned to Pto T1, which was found to represent the most common P. syringae lineage causing bacterial speck disease on tomato world-wide. Five genomes were sequenced and compared to each other. Identical genotypes were found in North America and Europe suggesting frequent pathogen movement between these continents. Moreover, the type III-secreted effector gene hopM1 was found to be under strong selection for loss of function and non-synonymous mutations in the fliC gene allowed to identify a region that triggers plant immunity. Finally, Pto T1 was compared to closely related bacteria isolated from snow pack and surface water in the French Alps. Recombination between alpine strains and crop strains was inferred and virulence gene repertoires of alpine strains and crop strains were found to overlap. Alpine strains cause disease on tomato and have relatively wider host ranges than Pto T1. The conclusion from these studies is that Pto T1 and other crop pathogens may have evolved from ancestors similar to the characterized environmental strains isolated in the French Alps by adapting their effector repertoire to individual crops becoming more virulent on these crops but losing virulence on other plants.
- The Plant Pathogen Pseudomonas syringae pv. tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato ImmunityCai, Rongman; Lewis, James; Yan, Shuangchun; Clarke, Christopher R.; Campanile, Francesco; Almeida, Nalvo F.; Studholme, David J.; Lindeberg, Magdalen; Schneider, David; Zaccardelli, Massimo; Setubal, João C.; Morales-Lizcano, Nadia P.; Bernal, Adriana; Coaker, Gitta; Baker, Christy; Bender, Carol L.; Leman, Scotland C.; Vinatzer, Boris A. (PLOS Pathogens, 2011-08-25)Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today’s Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.
- Pseudomonas syringae pv. actinidiae (PSA) Isolates from Recent Bacterial Canker of Kiwifruit Outbreaks Belong to the Same Genetic LineageMazzaglia, Angelo; Studholme, David J.; Taratufolo, Maria C.; Cai, Rongman; Almeida, Nalvo F.; Goodman, Tokia; Guttman, David S.; Vinatzer, Boris A.; Balestra, Giorgio M. (PLOS, 2012-05-09)Intercontinental spread of emerging plant diseases is one of the most serious threats to world agriculture. One emerging disease is bacterial canker of kiwi fruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (PSA). The disease first occurred in China and Japan in the 1980s and in Korea and Italy in the 1990s. A more severe form of the disease broke out in Italy in 2008 and in additional countries in 2010 and 2011 threatening the viability of the global kiwi fruit industry. To start investigating the source and routes of international transmission of PSA, genomes of strains from China (the country of origin of the genus Actinidia), Japan, Korea, Italy and Portugal have been sequenced. Strains from China, Italy, and Portugal have been found to belong to the same clonal lineage with only 6 single nucleotide polymorphisms (SNPs) in 3,453,192 bp and one genomic island distinguishing the Chinese strains from the European strains. Not more than two SNPs distinguish each of the Italian and Portuguese strains from each other. The Japanese and Korean strains belong to a separate genetic lineage as previously reported. Analysis of additional European isolates and of New Zealand isolates exploiting genome-derived markers showed that these strains belong to the same lineage as the Italian and Chinese strains. Interestingly, the analyzed New Zealand strains are identical to European strains at the tested SNP loci but test positive for the genomic island present in the sequenced Chinese strains and negative for the genomic island present in the European strains. Results are interpreted in regard to the possible direction of movement of the pathogen between countries and suggest a possible Chinese origin of the European and New Zealand outbreaks.