Browsing by Author "Cain, Jason James"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Collision Analysis of the Reversible Crankshaft Mechanism in a Convertible Refrigeration CompressorCain, Jason James (Virginia Tech, 2000-06-02)The purpose of this study is to analyze the behavior of a reversible two-cylinder refrigerant compressor manufactured by Bristol Compressor Incorporated. This compressor contains a specialized linkage that causes the compressor to transition from a two-cylinder compressor to a single-cylinder compressor when the direction of rotation of the crankshaft is reversed. The linkage accomplishes this by reducing the throw of one cylinder to zero. Of interest are the conditions to which this linkage is subjected when the direction of rotation is again reversed, causing the compressor to return to its two-cylinder functioning. When this reversal takes place, a collision occurs within the linkage. These repeated collisions are thought to be the cause of fatigue failure of the linkage in many of these compressors. To verify that this collision is the problem, an understanding of the stress state during the collision is needed. This thesis begins the work necessary to determine the dynamic stress state present within the system. A FORTRAN program was developed that modeled the kinematic behavior of the system under operating conditions. The program predicts the accelerations, velocities, positions, and internal forces present within the system during startup conditions. Also, a method has been developed to model rotary sliding contact between two cylindrical surfaces. This method is developed and investigated in hopes that it will facilitate the modeling of the behavior of the compressor linkage in a dynamic finite element analysis.
- Long Term Durability of Glass Reinforced CompositesCain, Jason James (Virginia Tech, 2008-04-04)This dissertation discusses topics related to the performance and long-term durability of glass-reinforced composites. The first portion of this dissertation describes work to assess the effect that post-curing has on widely used E-glass/vinyl-ester composites (E-glass/Derakane 510-A and E-glass/Derakane 8084). It is shown that post-curing can have significant positive effects on the initial material properties of glass-reinforced vinyl ester composites. Furthermore, the post-cure of 82ºC for four hours stabilizes the matrix, and as such reduces matrix-related material property evolution. By stopping or nearly stopping material property evolution due to matrix curing over time, the post-cure regime isolates and allows the study of other time-dependent effects, such as fatigue or hygrothermal degradation, and aids designers by establishing an unchanging base set of initial (undamaged) material design properties. The second portion of this dissertation discusses the effects that mean stress and R-ratio have on the fatigue performance of the same material. Qualitative and quantitative differences are seen in the performance as a function of the loading ratio. A residual strength based life prediction model developed at Virginia Tech is applied to the fatigue data, characterizing the material under constant-amplitude loading. Three curve-fitting parameters are then used along with the model to predict variable-amplitude fatigue lives, with remarkably good results. The final portion of the dissertation concerns the effect of hygrothermal and accelerated aging on glass-reinforced composites. A meta-study is performed on data from the literature, and a glass-degradation-based life-prediction model is applied to the data. It is seen that a static fatigue-based activation energy approach to residual strength can predict activation energies associated with glass-reinforced composite strength degradation in the case of glass-reinforced concrete quite well, predicting values of 80-100 kJ/mol, which are similar to those expected for glass dissolution via silica ring opening. The model may also hold some promise for doing the same for glass-reinforced polymer composites.